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Chapter 300 

Linear Regression and Correlation 

Introduction  
Linear Regression refers to a group of techniques for fitting and studying the straight-line relationship 
between two variables. Linear regression estimates the regression coefficients 𝛽𝛽0 and 𝛽𝛽1 in the equation 

𝑌𝑌𝑗𝑗 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑗𝑗 + 𝜀𝜀𝑗𝑗 

where X is the independent variable, Y is the dependent variable, 𝛽𝛽0 is the Y intercept, 𝛽𝛽1 is the slope, and 𝜀𝜀 is 
the error.  

 
 

In order to calculate confidence intervals and hypothesis tests, it is assumed that the errors are 
independent and normally distributed with mean zero and variance 𝜎𝜎2. 

Given a sample of N observations on X and Y, the method of least squares estimates 𝛽𝛽0 and 𝛽𝛽1 as well as 
various other quantities that describe the precision of the estimates and the goodness-of-fit of the straight 
line to the data. Since the estimated line will seldom fit the data exactly, a term for the discrepancy between 
the actual and fitted data values must be added. The equation then becomes  

𝑦𝑦𝑗𝑗 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥𝑗𝑗 + 𝑒𝑒𝑗𝑗 

= 𝑦𝑦�𝑗𝑗 + 𝑒𝑒𝑗𝑗 
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where j is the observation (row) number, 𝑏𝑏0 estimates 𝛽𝛽0, 𝑏𝑏1 estimates 𝛽𝛽1, and 𝑒𝑒𝑗𝑗 is the discrepancy between 
the actual data value 𝑦𝑦𝑗𝑗  and the fitted value given by the regression equation, which is often referred to as 
𝑦𝑦�𝑗𝑗. This discrepancy is usually referred to as the residual. 

Note that the linear regression equation is a mathematical model describing the relationship between X and 
Y. In most cases, we do not believe that the model defines the exact relationship between the two variables. 
Rather, we use it as an approximation to the exact relationship. Part of the analysis will be to determine how 
close the approximation is. 

Also note that the equation predicts Y from X. The value of Y depends on the value of X. The influence of all 
other variables on the value of Y is lumped into the residual.  

Correlation 
Once the intercept and slope have been estimated using least squares, various indices are studied to 
determine the reliability of these estimates. One of the most popular of these reliability indices is the 
correlation coefficient. The correlation coefficient, or simply the correlation, is an index that ranges from -1 to 
1. When the value is near zero, there is no linear relationship. As the correlation gets closer to plus or minus 
one, the relationship is stronger. A value of one (or negative one) indicates a perfect linear relationship 
between two variables.  

Actually, the strict interpretation of the correlation is different from that given in the last paragraph. The 
correlation is a parameter of the bivariate normal distribution. This distribution is used to describe the 
association between two variables. This association does not include a cause-and-effect statement. That is, 
the variables are not labeled as dependent and independent. One does not depend on the other. Rather, 
they are considered as two random variables that seem to vary together. The important point is that in 
linear regression, Y is assumed to be a random variable and X is assumed to be a fixed variable. In 
correlation analysis, both Y and X are assumed to be random variables. 

Possible Uses of Linear Regression Analysis 
Montgomery (1982) outlines the following four purposes for running a regression analysis. 

Description 

The analyst is seeking to find an equation that describes or summarizes the relationship between two 
variables. This purpose makes the fewest assumptions. 

Coefficient Estimation  

This is a popular reason for doing regression analysis. The analyst may have a theoretical relationship in 
mind, and the regression analysis will confirm this theory. Most likely, there is specific interest in the 
magnitudes and signs of the coefficients. Frequently, this purpose for regression overlaps with others.  
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Prediction 

The prime concern here is to predict the response variable, such as sales, delivery time, efficiency, 
occupancy rate in a hospital, reaction yield in some chemical process, or strength of some metal. These 
predictions may be very crucial in planning, monitoring, or evaluating some process or system. There are 
many assumptions and qualifications that must be made in this case. For instance, you must not extrapolate 
beyond the range of the data. Also, interval estimates require that normality assumptions to hold. 

Control 

Regression models may be used for monitoring and controlling a system. For example, you might want to 
calibrate a measurement system or keep a response variable within certain guidelines. When a regression 
model is used for control purposes, the independent variable must be related to the dependent variable in 
a causal way. Furthermore, this functional relationship must continue over time. If it does not, continual 
modification of the model must occur. 

Assumptions 
The following assumptions must be considered when using linear regression analysis. 

Linearity 

Linear regression models the straight-line relationship between Y and X. Any curvilinear relationship is 
ignored. This assumption is most easily evaluated by using a scatter plot. This should be done early on in 
your analysis. Nonlinear patterns can also show up in residual plot. A lack of fit test is also provided. 

Constant Variance 

The variance of the residuals is assumed to be constant for all values of X. This assumption can be detected 
by plotting the residuals versus the independent variable. If these residual plots show a rectangular shape, 
we can assume constant variance. On the other hand, if a residual plot shows an increasing or decreasing 
wedge or bowtie shape, nonconstant variance (heteroscedasticity) exists and must be corrected. 

The corrective action for nonconstant variance is to use weighted linear regression or to transform either Y 
or X in such a way that variance is more nearly constant. The most popular variance stabilizing transformation 
is the to take the logarithm of Y.  

Special Causes 

It is assumed that all special causes, outliers due to one-time situations, have been removed from the data. 
If not, they may cause nonconstant variance, nonnormality, or other problems with the regression model. 
The existence of outliers is detected by considering scatter plots of Y and X as well as the residuals versus X. 
Outliers show up as points that do not follow the general pattern. 

Normality 

When hypothesis tests and confidence limits are to be used, the residuals are assumed to follow the normal 
distribution. 
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Independence 

The residuals are assumed to be uncorrelated with one another, which implies that the Y’s are also 
uncorrelated. This assumption can be violated in two ways: model misspecification or time-sequenced data. 

1. Model misspecification. If an important independent variable is omitted or if an incorrect functional 
form is used, the residuals may not be independent. The solution to this dilemma is to find the 
proper functional form or to include the proper independent variables and use multiple regression. 

2. Time-sequenced data. Whenever regression analysis is performed on data taken over time, the 
residuals may be correlated. This correlation among residuals is called serial correlation. Positive 
serial correlation means that the residual in time period j tends to have the same sign as the 
residual in time period (j - k), where k is the lag in time periods. On the other hand, negative serial 
correlation means that the residual in time period j tends to have the opposite sign as the residual in 
time period (j - k). 

The presence of serial correlation among the residuals has several negative impacts. 

1. The regression coefficients remain unbiased, but they are no longer efficient, i.e., minimum variance 
estimates. 

2. With positive serial correlation, the mean square error may be seriously underestimated. The impact 
of this is that the standard errors are underestimated, the t-tests are inflated (show significance 
when there is none), and the confidence intervals are shorter than they should be. 

3. Any hypothesis tests or confidence limits that require the use of the t or F distribution are invalid. 

You could try to identify these serial correlation patterns informally, with the residual plots versus time. A 
better analytical way would be to use the Durbin-Watson test to assess the amount of serial correlation. 

Technical Details  

Regression Analysis 
This section presents the technical details of least squares regression analysis using a mixture of summation 
and matrix notation. Because this module also calculates weighted linear regression, the formulas will 
include the weights, 𝑤𝑤𝑗𝑗. When weights are not used, the 𝑤𝑤𝑗𝑗 are set to one. 

Define the following vectors and matrices. 

𝒀𝒀 =

⎣
⎢
⎢
⎢
⎡
𝑦𝑦1
⋮
𝑦𝑦𝑗𝑗
⋮
𝑦𝑦𝑁𝑁⎦
⎥
⎥
⎥
⎤

,𝑿𝑿 =

⎣
⎢
⎢
⎢
⎡
1 𝑥𝑥1
⋮ ⋮
1 𝑥𝑥𝑗𝑗
⋮ ⋮
1 𝑥𝑥𝑁𝑁⎦

⎥
⎥
⎥
⎤

, 𝒆𝒆 =

⎣
⎢
⎢
⎢
⎡
𝑒𝑒1
⋮
𝑒𝑒𝑗𝑗
⋮
𝑒𝑒𝑁𝑁⎦
⎥
⎥
⎥
⎤

,𝟏𝟏 =

⎣
⎢
⎢
⎢
⎡
1
⋮
1
⋮
1⎦
⎥
⎥
⎥
⎤

,𝒃𝒃 = �𝑏𝑏0𝑏𝑏1
� 

𝑾𝑾 =

⎣
⎢
⎢
⎢
⎡
𝑤𝑤1 0 0 ⋯ 0
0 ⋱ 0 0 ⋮
0 0 𝑤𝑤𝑗𝑗 0 0
⋮ 0 0 ⋱ 0
0 ⋯ 0 0 𝑤𝑤𝑁𝑁⎦

⎥
⎥
⎥
⎤
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Least Squares  

Using this notation, the least squares estimates are found using the equation. 

𝒃𝒃 = (𝑿𝑿′𝑾𝑾𝑾𝑾)−𝟏𝟏𝑿𝑿′𝑾𝑾𝑾𝑾 

Note that when the weights are not used, this reduces to 

𝒃𝒃 = (𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀 

The predicted values of the dependent variable are given by 

𝒀𝒀� = 𝒃𝒃′𝑿𝑿 

The residuals are calculated using 

𝒆𝒆 = 𝒀𝒀 − 𝒀𝒀� 

Estimated Variances  

An estimate of the variance of the residuals is computed using 

𝑠𝑠2 =
𝒆𝒆′𝑾𝑾𝑾𝑾
𝑁𝑁 − 2

 

An estimate of the variance of the regression coefficients is calculated using 

𝑉𝑉 �
𝑏𝑏0
𝑏𝑏1
� = �

𝑠𝑠𝑏𝑏0
2 𝑠𝑠𝑏𝑏0𝑏𝑏1

𝑠𝑠𝑏𝑏0𝑏𝑏1 𝑠𝑠𝑏𝑏1
2 � 

= 𝑠𝑠2(𝑿𝑿′𝑾𝑾𝑾𝑾)−1 

An estimate of the variance of the predicted mean of Y at a specific value of X, say 𝑋𝑋0, is given by 

𝑠𝑠𝑌𝑌𝑚𝑚|𝑋𝑋0
2 = 𝑠𝑠2(1,𝑋𝑋0)(𝑿𝑿′𝑾𝑾𝑾𝑾)−1 �

1
𝑋𝑋0
� 

An estimate of the variance of the predicted value of Y for an individual for a specific value of X, say 𝑋𝑋0, is 
given by 

𝑠𝑠𝑌𝑌𝐼𝐼|𝑋𝑋0
2 = 𝑠𝑠2 + 𝑠𝑠𝑌𝑌𝑚𝑚|𝑋𝑋0

2  
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Hypothesis Tests of the Intercept and Slope 

Using these variance estimates and assuming the residuals are normally distributed, hypothesis tests may 
be constructed using the Student’s t distribution with N - 2 degrees of freedom using 

𝑡𝑡𝑏𝑏0 =
𝑏𝑏0 − 𝐵𝐵0
𝑠𝑠𝑏𝑏0

 

and 

𝑡𝑡𝑏𝑏1 =
𝑏𝑏1 − 𝐵𝐵1
𝑠𝑠𝑏𝑏1

 

Usually, the hypothesized values of 𝐵𝐵0 and 𝐵𝐵1 are zero, but this does not have to be the case. 

Confidence Intervals of the Intercept and Slope 

A 100(1 − 𝛼𝛼)% confidence interval for the intercept, 𝛽𝛽0, is given by 

𝑏𝑏0 ± 𝑡𝑡1−𝛼𝛼/2,𝑁𝑁−2𝑠𝑠𝑏𝑏0 

A 100(1 − 𝛼𝛼)% confidence interval for the slope, 𝛽𝛽1, is given by 

𝑏𝑏1 ± 𝑡𝑡1−𝛼𝛼/2,𝑁𝑁−2𝑠𝑠𝑏𝑏1 

Confidence Interval of Y for Given X 

A 100(1 − 𝛼𝛼)% confidence interval for the mean of Y at a specific value of X, say 𝑋𝑋0, is given by 

𝑏𝑏0 + 𝑏𝑏1𝑋𝑋0 ± 𝑡𝑡1−𝛼𝛼/2,𝑁𝑁−2𝑠𝑠𝑌𝑌𝑚𝑚|𝑋𝑋0 

Note that this confidence interval assumes that the sample size at X is N. 

A 100(1 − 𝛼𝛼)% prediction interval for the value of Y for an individual at a specific value of X, say 𝑋𝑋0, is given 
by 

𝑏𝑏0 + 𝑏𝑏1𝑋𝑋0 ± 𝑡𝑡1−𝛼𝛼/2,𝑁𝑁−2𝑠𝑠𝑌𝑌𝐼𝐼|𝑋𝑋0 

Working-Hotelling Confidence Band for the Mean of Y 

A 100(1 − 𝛼𝛼)% simultaneous confidence band for the mean of Y at all values of X is given by 

𝑏𝑏0 + 𝑏𝑏1𝑋𝑋 ± 𝑠𝑠𝑌𝑌𝑚𝑚|𝑋𝑋�2𝐹𝐹1−𝛼𝛼,2,𝑁𝑁−2 

This confidence band applies to all possible values of X. The confidence coefficient, 100(1− 𝛼𝛼)%, is the 
percent of a long series of samples for which this band covers the entire line for all values of X from 
negativity infinity to positive infinity. 
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Confidence Interval of X for Given Y 

This type of analysis is called inverse prediction or calibration. A 100(1 − 𝛼𝛼)% confidence interval for the 
mean value of X for a given value of Y is calculated as follows. First, calculate X from Y using 

𝑋𝑋� =
𝑌𝑌 − 𝑏𝑏0
𝑏𝑏1

 

Then, calculate the interval using  

�𝑋𝑋� − 𝑔𝑔𝑋𝑋�� ± 𝐴𝐴�(1 − 𝑔𝑔)
𝑁𝑁 +

�𝑋𝑋� − 𝑋𝑋��
2

∑ 𝑤𝑤𝑗𝑗�𝑋𝑋𝑗𝑗 − 𝑋𝑋��𝑁𝑁
𝑗𝑗=1

1 − 𝑔𝑔
 

where 

𝐴𝐴 =
𝑡𝑡1−α/2,𝑁𝑁−2𝑠𝑠

𝑏𝑏1
 

𝑔𝑔 =
𝐴𝐴2

∑ 𝑤𝑤𝑗𝑗�𝑋𝑋𝑗𝑗 − 𝑋𝑋��𝑁𝑁
𝑗𝑗=1

 

A 100(1 − 𝛼𝛼)% confidence interval for an individual value of X for a given value of Y is  

�𝑋𝑋� − 𝑔𝑔𝑋𝑋�� ± 𝐴𝐴�(N + 1)(1 − 𝑔𝑔)
𝑁𝑁 +

�𝑋𝑋� − 𝑋𝑋��
2

∑ 𝑤𝑤𝑗𝑗�𝑋𝑋𝑗𝑗 − 𝑋𝑋��𝑁𝑁
𝑗𝑗=1

1 − 𝑔𝑔
 

R-Squared (Percent of Variation Explained) 

Several measures of the goodness-of-fit of the regression model to the data have been proposed, but by far 
the most popular is 𝑅𝑅2. 𝑅𝑅2 is the square of the correlation coefficient. It is the proportion of the variation in 
Y that is accounted by the variation in X. 𝑅𝑅2 varies between zero (no linear relationship) and one (perfect 
linear relationship). 

𝑅𝑅2, officially known as the coefficient of determination, is defined as the sum of squares due to the 
regression divided by the adjusted total sum of squares of Y. The formula for 𝑅𝑅2 is 

𝑅𝑅2 = 1 − �
𝒆𝒆′𝑾𝑾𝑾𝑾

𝒀𝒀′𝑾𝑾𝑾𝑾− (𝟏𝟏′𝑾𝑾𝑾𝑾)𝟐𝟐
𝟏𝟏′𝑾𝑾𝑾𝑾

� 

=
𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 

𝑅𝑅2 is probably the most popular measure of how well a regression model fits the data. 𝑅𝑅2 may be defined 
either as a ratio or a percentage. Since we use the ratio form, its values range from zero to one. A value of 
𝑅𝑅2 near zero indicates no linear relationship, while a value near one indicates a perfect linear fit. Although 
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popular, 𝑅𝑅2 should not be used indiscriminately or interpreted without scatter plot support. Following are 
some qualifications on its interpretation:  

1. Additional independent variables. It is possible to increase 𝑅𝑅2 by adding more independent variables, 
but the additional independent variables may actually cause an increase in the mean square error, 
an unfavorable situation. This usually happens when the sample size is small. 

2. Range of the independent variable. 𝑅𝑅2 is influenced by the range of the independent variable. 𝑅𝑅2 
increases as the range of X increases and decreases as the range of the X decreases.  

3. Slope magnitudes. 𝑅𝑅2 does not measure the magnitude of the slopes.  

4. Linearity. 𝑅𝑅2 does not measure the appropriateness of a linear model. It measures the strength of 
the linear component of the model. Suppose the relationship between X and Y was a perfect circle. 
Although there is a perfect relationship between the variables, the 𝑅𝑅2 value would be zero. 

5. Predictability. A large 𝑅𝑅2 does not necessarily mean high predictability, nor does a low 𝑅𝑅2 necessarily 
mean poor predictability.  

6. No-intercept model. The definition of 𝑅𝑅2 assumes that there is an intercept in the regression model. 
When the intercept is left out of the model, the definition of 𝑅𝑅2 changes dramatically. The fact that 
your 𝑅𝑅2 value increases when you remove the intercept from the regression model does not reflect 
an increase in the goodness of fit. Rather, it reflects a change in the underlying definition of 𝑅𝑅2. 

7. Sample size. 𝑅𝑅2 is highly sensitive to the number of observations. The smaller the sample size, the 
larger its value. 

Rbar-Squared (Adjusted R-Squared) 

𝑅𝑅2 varies directly with N, the sample size. In fact, when N = 2, 𝑅𝑅2 = 1. Because 𝑅𝑅2 is so closely tied to the 
sample size, an adjusted 𝑅𝑅2 value, called 𝑅𝑅�2, has been developed. 𝑅𝑅�2 was developed to minimize the impact 
of sample size. The formula for 𝑅𝑅�2 is 

𝑅𝑅�2 = 1 − �
�𝑁𝑁 − (𝑝𝑝 − 1)�(1 − 𝑅𝑅2)

𝑁𝑁 − 𝑝𝑝
� 

where p is 2 if the intercept is included in the model and 1 if not. 

Probability Ellipse 

When both variables are random variables and they follow the bivariate normal distribution, it is possible to 
construct a probability ellipse for them (see Jackson (1991) page 342). The equation of the 100(1− α)% 
probability ellipse is given by those values of X and Y that are solutions of 

𝑇𝑇2,𝑁𝑁−2,𝛼𝛼
2 =

𝑠𝑠𝑌𝑌𝑌𝑌𝑠𝑠𝑋𝑋𝑋𝑋
𝑠𝑠𝑌𝑌𝑌𝑌𝑠𝑠𝑋𝑋𝑋𝑋 − 𝑠𝑠𝑋𝑋𝑋𝑋2

�
(𝑋𝑋 − 𝑋𝑋�)2

𝑠𝑠𝑋𝑋𝑋𝑋
+

(𝑌𝑌 − 𝑌𝑌�)2

𝑠𝑠𝑌𝑌𝑌𝑌
−

2𝑠𝑠𝑋𝑋𝑋𝑋(𝑋𝑋 − 𝑋𝑋�)(𝑌𝑌 − 𝑌𝑌�)
𝑠𝑠𝑋𝑋𝑋𝑋𝑠𝑠𝑌𝑌𝑌𝑌

� 
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Orthogonal Regression Line 

The least squares estimates discussed above minimize the sum of the squared distances between the Y’s 
and their predicted values. In some situations, both variables are random variables and it is arbitrary which 
is designated as the dependent variable and which is the independent variable. When the choice of which 
variable is the dependent variable is arbitrary, you may want to use the orthogonal regression line rather than 
the least squares regression line. The orthogonal regression line minimizes the sum of the squared 
perpendicular distances from each observation to the regression line. The orthogonal regression line is the 
first principal component when a principal components analysis is run on the two variables. 

Jackson (1991) page 343 gives a formula for computing the orthogonal regression line without computing a 
principal components analysis. The slope is given by 

𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜,1 =
𝑠𝑠𝑌𝑌𝑌𝑌 − 𝑠𝑠𝑋𝑋𝑋𝑋 + �𝑠𝑠𝑌𝑌𝑌𝑌 − 𝑠𝑠𝑋𝑋𝑋𝑋 + 4𝑠𝑠𝑋𝑋𝑋𝑋2

2𝑠𝑠𝑋𝑋𝑋𝑋
 

where 

𝑠𝑠𝑋𝑋𝑋𝑋 =
∑ 𝑤𝑤𝑗𝑗�𝑋𝑋𝑗𝑗 − 𝑋𝑋���𝑌𝑌𝑗𝑗 − 𝑌𝑌��𝑁𝑁
𝑗𝑗=1

𝑁𝑁 − 1
 

The estimate of the intercept is then computed using 

𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜,𝑦𝑦 = 𝑌𝑌� − 𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜,1𝑋𝑋� 

Although Jackson gives formulas for a confidence interval on the slope and intercept, we do not provide 
them in NCSS because their properties are not well understood, and they require certain bivariate normal 
assumptions. Instead, NCSS provides bootstrap confidence intervals for the slope and intercept. 

The Correlation Coefficient 
The correlation coefficient can be interpreted in several ways. Here are some of the interpretations. 

1. If both Y and X are standardized by subtracting their means and dividing by their standard 
deviations, the correlation is the slope of the regression of the standardized Y on the standardized X.  

2. The correlation is the standardized covariance between Y and X.  

3. The correlation is the geometric average of the slopes of the regressions of Y on X and of X on Y. 

4. The correlation is the square root of R-squared, using the sign from the slope of the regression of Y 
on X. 
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The corresponding formulas for the calculation of the correlation coefficient are  

𝑟𝑟 =
∑ 𝑤𝑤𝑗𝑗�𝑋𝑋𝑗𝑗 − 𝑋𝑋���𝑌𝑌𝑗𝑗 − 𝑌𝑌��𝑁𝑁
𝑗𝑗=1

��∑ 𝑤𝑤𝑗𝑗�𝑋𝑋𝑗𝑗 − 𝑋𝑋��2𝑁𝑁
𝑗𝑗=1 � �∑ 𝑤𝑤𝑗𝑗�𝑌𝑌𝑗𝑗 − 𝑌𝑌��2𝑁𝑁

𝑗𝑗=1 �
 

=
𝑠𝑠𝑋𝑋𝑋𝑋

√𝑠𝑠𝑋𝑋𝑋𝑋𝑠𝑠𝑌𝑌𝑌𝑌
 

= ±�𝑏𝑏𝑌𝑌𝑌𝑌𝑏𝑏𝑋𝑋𝑋𝑋 

= sign(𝑏𝑏𝑌𝑌𝑌𝑌)�𝑅𝑅2 

where 𝑠𝑠𝑋𝑋𝑋𝑋 is the covariance between X and Y, 𝑏𝑏𝑋𝑋𝑋𝑋 is the slope from the regression of X on Y, and 𝑏𝑏𝑌𝑌𝑌𝑌 is the 
slope from the regression of Y on X. 𝑠𝑠𝑋𝑋𝑋𝑋 is calculated using the formula 

𝑠𝑠𝑋𝑋𝑋𝑋 =
∑ 𝑤𝑤𝑗𝑗�𝑋𝑋𝑗𝑗 − 𝑋𝑋���𝑌𝑌𝑗𝑗 − 𝑌𝑌��𝑁𝑁
𝑗𝑗=1

𝑁𝑁 − 1
 

The population correlation coefficient, 𝜌𝜌, is defined for two random variables, U and W, as follows 

𝜌𝜌 =
𝜎𝜎𝑈𝑈𝑈𝑈

�𝜎𝜎𝑈𝑈2𝜎𝜎𝑊𝑊2
 

=
𝐸𝐸[(𝑈𝑈 − 𝜇𝜇𝑈𝑈)(𝑊𝑊 − 𝜇𝜇𝑊𝑊)]

�𝑉𝑉𝑉𝑉𝑉𝑉(𝑈𝑈)𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊)
 

Note that this definition does not refer to one variable as dependent and the other as independent. Rather, 
it simply refers to two random variables. 

Facts about the Correlation Coefficient 

The correlation coefficient has the following characteristics. 

1. The range of r is between -1 and 1, inclusive. 

2. If r = 1, the observations fall on a straight line with positive slope. 

3. If r = -1, the observations fall on a straight line with negative slope. 

4. If r = 0, there is no linear relationship between the two variables. 

5. r is a measure of the linear (straight-line) association between two variables. 

6. The value of r is unchanged if either X or Y is multiplied by a constant or if a constant is added. 

7. The physical meaning of r is mathematically abstract and may not be very helpful. However, we 
provide it for completeness. The correlation is the cosine of the angle formed by the intersection of 
two vectors in N-dimensional space. The components of the first vector are the values of X while the 
components of the second vector are the corresponding values of Y. These components are 
arranged so that the first dimension corresponds to the first observation, the second dimension 
corresponds to the second observation, and so on. 
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Hypothesis Tests for the Correlation 

You may be interested in testing hypotheses about the population correlation coefficient, such as ρ = ρ0. 
When ρ0 = 0, the test is identical to the t-test used to test the hypothesis that the slope is zero. The test 
statistic is calculated using 

𝑡𝑡𝑁𝑁−2 =
𝑟𝑟

�1 − 𝑟𝑟2
𝑁𝑁 − 2

 

However, when 𝜌𝜌0 ≠ 0, the test is different from the corresponding test that the slope is a specified, 
nonzero, value. 

NCSS provides two methods for testing whether the correlation is equal to a specified, nonzero, value.  

Method 1. This method uses the distribution of the correlation coefficient. Under the null hypothesis that 
𝜌𝜌 = 𝜌𝜌0 and using the distribution of the sample correlation coefficient, the likelihood of obtaining the 
sample correlation coefficient, r, can be computed. This likelihood is the statistical significance of the test. 
This method requires the assumption that the two variables follow the bivariate normal distribution. 

Method 2. This method uses the fact that Fisher’s z transformation, given by 

𝐹𝐹(𝑟𝑟) =
1
2

ln �
1 + 𝑟𝑟
1− 𝑟𝑟

� 

is closely approximated by a normal distribution with mean  

1
2

ln �
1 + 𝜌𝜌
1− 𝜌𝜌

� 

and variance  

1
𝑁𝑁 − 3

 

To test the hypothesis that 𝜌𝜌 = 𝜌𝜌0, you calculate z using  

𝑧𝑧 =
𝐹𝐹(𝑟𝑟) − 𝐹𝐹(ρ0)

� 1
𝑁𝑁 − 3

 

=
ln �1 + 𝑟𝑟

1 − 𝑟𝑟� − ln �1 − 𝜌𝜌0
1 − 𝜌𝜌0

�

2� 1
𝑁𝑁 − 3

 

and use the fact that z is approximately distributed as the standard normal distribution with mean equal to 
zero and variance equal to one. This method requires two assumptions. First, that the two variables follow 
the bivariate normal distribution. Second, that the distribution of z is approximated by the standard normal 
distribution.  

This method has become popular because it uses the commonly available normal distribution rather than 
the obscure correlation distribution. However, because it makes an additional assumption, it is not as 
accurate as is method 1. In fact, we have included in for completeness, but recommend the use of Method 
1. 
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Confidence Intervals for the Correlation 

A 100(1 − 𝛼𝛼)% confidence interval for 𝜌𝜌 may be constructed using either of the two hypothesis methods 
described above. The confidence interval is calculated by finding, either directly using Method 2 or by a 
search using Method 1, all those values of 𝜌𝜌0 for which the hypothesis test is not rejected. This set of values 
becomes the confidence interval. 

Be careful not to make the common mistake in assuming that this confidence interval is related to a 
transformation of the confidence interval on the slope 𝛽𝛽1. The two confidence intervals are not simple 
transformations of each other. 

Spearman Rank Correlation Coefficient 

The Spearman rank correlation coefficient is a popular nonparametric analog of the usual correlation 
coefficient. This statistic is calculated by replacing the data values with their ranks and calculating the 
correlation coefficient of the ranks. Tied values are replaced with the average rank of the ties. This 
coefficient is really a measure of association rather than correlation, since the ranks are unchanged by a 
monotonic transformation of the original data. 

When N is greater than 10, the distribution of the Spearman rank correlation coefficient can be 
approximated by the distribution of the regular correlation coefficient. 

Note that when weights are specified, the calculation of the Spearman rank correlation coefficient uses the 
weights. 

Smoothing with Loess 
The loess (locally weighted regression scatter plot smoothing) method is used to obtain a smooth curve 
representing the relationship between X and Y. Unlike linear regression, loess does not have a simple 
mathematical model. Rather, it is an algorithm that, given a value of X, computes an appropriate value of Y. 
The algorithm was designed so that the loess curve travels through the middle of the data, summarizing the 
relationship between X and Y. 

The loess algorithm works as follows. 

1. Select a value for X. Call it X0. 

2. Select a neighborhood of points close to X0. 

3. Fit a weighted regression of Y on X using only the points in this neighborhood. In the regression, the 
weights are inversely proportional to the distance between X and X0. 

4. To make the procedure robust to outliers, a robust regression may be substituted for the weighted 
regression in step 3. This robust procedure modifies the weights so that observations with large 
residuals receive smaller weights. 

5. Use the regression coefficients from the weighted regression in step 3 to obtain a predicted value 
for Y at X0. 

6. Repeat steps 1 - 5 for a set of X’s between the minimum and maximum of X. 
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Mathematical Details of Loess 

This section presents the mathematical details of the loess method of scatter plot smoothing. Note that 
implicit in the discussion below is the assumption that Y is the dependent variable and X is the independent 
variable. 

Loess gives the value of Y for a given value of X, say X0. For each observation, define the distance between X 
and X0 as 

𝑑𝑑𝑗𝑗 = �𝑋𝑋𝑗𝑗 − 𝑋𝑋0� 

Let q be the number of observations in the neighborhood of X0. Define q as [fN] where f is the user-supplied 
fraction of the sample. Here, [Z] is the largest integer in Z. Often f = 0.40 is a good choice. The neighborhood 
is defined as the observations with the q smallest values of 𝑑𝑑𝑗𝑗. Define 𝑑𝑑𝑞𝑞 as the largest distance in the 
neighborhood of observations close to X0. 

The tricube weight function is defined as 

𝑇𝑇(𝑢𝑢) = �
(1 − |𝑢𝑢|3)3 |𝑢𝑢| < 1

0 |𝑢𝑢| ≥ 1
 

The weight for each observation is defined as 

𝑤𝑤𝑗𝑗 = 𝑇𝑇 �
�𝑋𝑋𝑗𝑗 − 𝑋𝑋0�

𝑑𝑑𝑞𝑞
� 

The weighted regression for X0 is defined by the value of b0, b1, and b2 that minimize the sum of squares 

�𝑇𝑇�
𝑋𝑋𝑗𝑗 − 𝑋𝑋0
𝑑𝑑𝑞𝑞

��𝑌𝑌𝑗𝑗 − 𝑏𝑏0 − 𝑏𝑏1�𝑋𝑋𝑗𝑗� − 𝑏𝑏2�𝑋𝑋𝑗𝑗�
2�

2
𝑁𝑁

𝑗𝑗=1

 

Note the if b2 is zero, a linear regression is fit. Otherwise, a quadratic regression is fit. The choice of linear or 
quadratic is an option in the procedure. The linear option is quicker, while the quadratic option fits peaks 
and valleys better. In most cases, there is little difference except at the extremes in the X space. 

Once b0, b1, and b2 have be estimated using weighted least squares, the loess value is computed using 

𝑌𝑌�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋0) = 𝑏𝑏0 − 𝑏𝑏1(𝑋𝑋0)− 𝑏𝑏2(𝑋𝑋0)2 

Note that a separate weighted regression must be run for each value of X0. 
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Robust Loess 

Outliers often have a large impact on least squares impact. A robust weighted regression procedure may be 
used to lessen the influence of outliers on the loess curve. This is done as follows. 

The q loess residuals are computed using the loess regression coefficients using the formula 

𝑟𝑟𝑗𝑗 = 𝑌𝑌𝑗𝑗 − 𝑌𝑌�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑋𝑋𝑗𝑗� 

New weights are defined as 

𝑤𝑤𝑗𝑗 = 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗𝐵𝐵 �
�𝑟𝑟𝑗𝑗�
6𝑀𝑀�

 

where 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗 is the previous weight for this observation, 𝑀𝑀 is the median of the q absolute values of the 
residuals, and 𝐵𝐵(𝑢𝑢) is the bisquare weight function defined as 

𝐵𝐵(𝑢𝑢) = �
(1 − 𝑢𝑢2)2 |𝑢𝑢| < 1

0 |𝑢𝑢| ≥ 1
 

This robust procedure may be iterated up to five items, but we have seen little difference in the appearance 
of the loess curve after two iterations. 

Note that it is not always necessary to create the robust weights. If you are not going to remove the outliers 
from your final results, you probably should not remove them from the loess curve by setting the number of 
robust iterations to zero. 

 

Testing Assumptions Using Residual Diagnostics 
Evaluating the amount of departure in your data from each linear regression assumption is necessary to see 
if any remedial action is necessary before the fitted results can be used. First, the types of plots and 
statistical analyses the are used to evaluate each assumption will be given. Second, each of the diagnostic 
values will be defined. 

Notation – Use of (j) and p 
Several of these residual diagnostic statistics are based on the concept of studying what happens to various 
aspects of the regression analysis when each row is removed from the analysis. In what follows, we use the 
notation (j) to mean that observation j has been omitted from the analysis. Thus, b(j) means the value of b 
calculated without using observation j. 

Some of the formulas depend on whether the intercept is fitted or not. We use p to indicate the number of 
regression parameters. When the intercept is fit, p will be two. Otherwise, p will be one. 
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1 – No Outliers 
Outliers are observations that are poorly fit by the regression model. If outliers are influential, they will 
cause serious distortions in the regression calculations. Once an observation has been determined to be an 
outlier, it must be checked to see if it resulted from a mistake. If so, it must be corrected or omitted. 
However, if no mistake can be found, the outlier should not be discarded just because it is an outlier. Many 
scientific discoveries have been made because outliers, data points that were different from the norm, were 
studied more closely. Besides being caused by simple data-entry mistakes, outliers often suggest the 
presence of an important independent variable that has been ignored. 

Outliers are easy to spot on bar charts or box plots of the residuals and RStudent. RStudent is the preferred 
statistic for finding outliers because each observation is omitted from the calculation making it less likely 
that the outlier can mask its presence. Scatter plots of the residuals and RStudent against the X variable are 
also helpful because they may show other problems as well. 

2 – Linear Regression Function - No Curvature 
The relationship between Y and X is assumed to be linear (straight-line). No mechanism for curvature is 
included in the model. Although a scatter plot of Y versus X can show curvature in the relationship, the best 
diagnostic tool is the scatter plot of the residual versus X. If curvature is detected, the model must be 
modified to account for the curvature. This may mean adding quadratic terms, taking logarithms of Y or X, or 
some other appropriate transformation. 

Loess Curve 

A loess curve should be plotted between X and Y to see if any curvature is present. 

Lack of Fit Test 

When the data include repeat observations at one or more X values (replicates), the adequacy of the linear 
model can be evaluated numerically by performing a lack of fit test. This test procedure detects 
nonlinearities.  

The lack of fit test is constructed as follows. First, the sum of squares for error is partitioned into two 
quantities: lack of fit and pure error. The pure error sum of squares is found by considering only those 
observations that are replicates. The X values are treated as the levels of the factor in a one-way analysis of 
variance. The sum of squares error from this analysis measures the underlying variation in Y that occurs 
when the value of X is held constant. Thus, it is called pure error. When the pure error sum of squares is 
subtracted from the error sum of squares of the linear regression, the result is measure of the amount of 
nonlinearity in the data. An F-ratio can be constructed from these two values that will test the statistical 
significance of the lack of fit. The F-ratio is constructed using the following equation. 

𝐹𝐹𝐷𝐷𝐷𝐷1,𝐷𝐷𝐷𝐷2 =

𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓
𝐷𝐷𝐷𝐷1

𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝐷𝐷𝐷𝐷2

 

where DF2 is the degrees of freedom for the error term in the one-way analysis of variance and DF1 is N - 
DF2 - 2. 
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3 – Constant Variance 
The errors are assumed to have constant variance across all values of X. If there are a lot of data (N > 100), 
nonconstant variance can be detected on a scatter plot of the residuals versus X. However, the most direct 
diagnostic tool to evaluate this assumption is a scatter plot of the absolute values of the residuals versus X. 
Often, the assumption is violated because the variance increases with X. This will show up as a ‘megaphone’ 
pattern to this plot. 

When nonconstant variance is detected, a variance-stabilizing transformation such as the square-root or 
logarithm may be used. However, the best solution is probably to use weighted regression, with weights 
inversely proportional to the magnitude of the residuals. 

Modified Levene Test 

The modified Levene test can be used to evaluate the validity of the assumption of constant variance. It has 
been shown to be reliable even when the residuals do not follow a normal distribution. 

The test is constructed by grouping the residuals according to the values of X. The number of groups is 
arbitrary, but usually, two groups are used. In this case, the absolute residuals of observations with low 
values of X are compared against those with high values of X. If the variability is constant, the variability in 
these two groups of residuals should be equal. The test is computed using the formula 

𝐿𝐿 =
𝑑̅𝑑1 − 𝑑̅𝑑2

𝑠𝑠𝐿𝐿�
1
𝑛𝑛1

+ 1
𝑛𝑛2

 

where 

𝑠𝑠𝐿𝐿 = �
∑ �𝑑𝑑𝑗𝑗1 − 𝑑̅𝑑1�
𝑛𝑛1
𝑗𝑗=1 + ∑ �𝑑𝑑𝑗𝑗2 − 𝑑̅𝑑2�

𝑛𝑛2
𝑗𝑗=1

𝑛𝑛1 + 𝑛𝑛2 − 2
 

𝑑𝑑𝑗𝑗1 = �𝑒𝑒𝑗𝑗1 − 𝑒̃𝑒1� 

𝑑𝑑𝑗𝑗2 = �𝑒𝑒𝑗𝑗2 − 𝑒̃𝑒2� 

and 𝑒̃𝑒1 is the median of the group of residuals for low values of X and 𝑒̃𝑒2  is the median of the group of 
residuals for high values of X. The test statistic L is approximately distributed as a t statistic with N - 2 
degrees of freedom. 
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4 – Independent Errors 
The Y’s, and thus the errors, are assumed to be independent. This assumption is usually ignored unless 
there is a reason to think that it has been violated, such as when the observations were taken across time. 
An easy way to evaluate this assumption is a scatter plot of the residuals versus their sequence number 
(assuming that the data are arranged in time sequence order). This plot should show a relative random 
pattern.  

The Durbin-Watson statistic is used as a formal test for the presence of first-order serial correlation. A more 
comprehensive method of evaluation is to look at the autocorrelations of the residuals at various lags. Large 
autocorrelations are found by testing each using Fisher’s z transformation. Although Fisher’s z 
transformation is only approximate in the case of autocorrelations, it does provide a reasonable measuring 
stick with which to judge the size of the autocorrelations.  

If independence is violated, confidence intervals and hypothesis tests are erroneous. Some remedial 
method that accounts for the lack of independence must be adopted, such as using first differences or the 
Cochrane-Orcutt procedure. 

Durbin-Watson Test 

The Durbin-Watson test is often used to test for positive or negative, first-order, serial correlation. It is 
calculated as follows 

𝐷𝐷𝐷𝐷 =
∑ �𝑒𝑒𝑗𝑗 − 𝑒𝑒𝑗𝑗−1�

2𝑁𝑁
𝑗𝑗=2

∑ 𝑒𝑒𝑗𝑗2𝑁𝑁
𝑗𝑗=1

 

The distribution of this test is difficult because it involves the X values. Originally, Durbin-Watson (1950, 
1951) gave a pair of bounds to be used. However, there is a large range of ‘inclusion’ found when using 
these bounds. Instead of using these bounds, we calculate the exact probability using the beta distribution 
approximation suggested by Durbin-Watson (1951). This approximation has been shown to be accurate to 
three decimal places in most cases which is all that are needed for practical work. 

5 – Normality of Residuals 
The residuals are assumed to follow the normal probability distribution with zero mean and constant 
variance. This can be evaluated using a normal probability plot of the residuals. Also, normality tests are 
used to evaluate this assumption. The most popular of the five normality tests provided is the Shapiro-Wilk 
test.  

Unfortunately, a breakdown in any of the other assumptions results in a departure from this assumption as 
well. Hence, you should investigate the other assumptions first, leaving this assumption until last. 
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Influential Observations 
Part of the evaluation of the assumptions includes an analysis to determine if any of the observations have 
an extra-large influence on the estimated regression coefficients, on the fit of the model, or on the value of 
Cook’s distance. By looking at how much removing an observation changes the results, an observation’s 
influence can be determined. 

Five statistics are used to investigate influence. These are Hat diagonal, DFFITS, DFBETAS, Cook’s D, and 
COVARATIO. 

Definitions Used in Residual Diagnostics 

Residual 

The residual is the difference between the actual Y value and the Y value predicted by the estimated 
regression model. It is also called the error, the deviate, or the discrepancy. 

𝑒𝑒𝑗𝑗 = 𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗  

Although the true errors, 𝜀𝜀𝑗𝑗, are assumed to be independent, the computed residuals, 𝑒𝑒𝑗𝑗, are not. Although 
the lack of independence among the residuals is a concern in developing theoretical tests, it is not a concern 
on the plots and graphs. 

The variance of the ε𝑗𝑗 is 𝜎𝜎2. However, the variance of the 𝑒𝑒𝑗𝑗 is not 𝜎𝜎2. In vector notation, the covariance 
matrix of e is given by 

𝑉𝑉(𝒆𝒆) = 𝜎𝜎2 �𝑰𝑰 −𝑾𝑾
𝟏𝟏
𝟐𝟐𝑿𝑿(𝑿𝑿′𝑾𝑾𝑾𝑾)−𝟏𝟏𝑿𝑿′𝑾𝑾

𝟏𝟏
𝟐𝟐� 

= 𝜎𝜎2(𝑰𝑰 − 𝑯𝑯) 

The matrix H is called the hat matrix since it puts the ‘hat’ on y as is shown in the unweighted case. 

𝑌𝑌� = 𝑿𝑿𝑿𝑿 

= 𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀 

= 𝑯𝑯𝑯𝑯 

Hence, the variance of 𝑒𝑒𝑗𝑗 is given by 

𝑉𝑉�𝑒𝑒𝑗𝑗� = 𝜎𝜎2�1 − ℎ𝑗𝑗𝑗𝑗� 

where ℎ𝑗𝑗𝑗𝑗 is the jth diagonal element of H. This variance is estimated using 

𝑉𝑉��𝑒𝑒𝑗𝑗� = 𝑠𝑠2�1 − ℎ𝑗𝑗𝑗𝑗� 
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Hat Diagonal 

The hat diagonal, ℎ𝑗𝑗𝑗𝑗, is the jth diagonal element of the hat matrix, H, where 

𝑯𝑯 = 𝑾𝑾
𝟏𝟏
𝟐𝟐𝑿𝑿(𝑿𝑿′𝑾𝑾𝑾𝑾)−𝟏𝟏𝑿𝑿′𝑾𝑾

𝟏𝟏
𝟐𝟐 

H captures an observation’s remoteness in the X-space. Some authors refer to the hat diagonal as a 
measure of leverage in the X-space. As a rule of thumb, hat diagonals greater than 4/N are considered 
influential and are called high-leverage observations. 

Note that a high-leverage observation is not a bad observation. Rather, high-leverage observations exert 
extra influence on the final results, so care should be taken to ensure that they are correct. You should not 
delete an observation just because it has a high-influence. However, when you interpret the regression 
equation, you should bear in mind that the results may be due to a few, high-leverage observations. 

Standardized Residual 

As shown above, the variance of the observed residuals is not constant. This makes comparisons among the 
residuals difficult. One solution is to standardize the residuals by dividing them by their standard deviations. 
This will give a set of residuals with constant variance. 

The formula for this residual is 

𝑟𝑟𝑗𝑗 =
𝑒𝑒𝑗𝑗

𝑠𝑠�1 − ℎ𝑗𝑗𝑗𝑗
 

s(j) or MSEi 

This is the value of the mean squared error calculated without observation j. The formula for s(j) is given by 

𝑠𝑠(𝑗𝑗)2 =
1

𝑁𝑁 − 𝑝𝑝 − 1
� 𝑤𝑤𝑖𝑖�𝑦𝑦𝑖𝑖 − 𝒙𝒙𝒊𝒊𝒃𝒃(𝑗𝑗)�
𝑁𝑁

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗

 

=
(𝑁𝑁 − 𝑝𝑝)𝑠𝑠2 −

𝑤𝑤𝑗𝑗𝑒𝑒𝑗𝑗2

1 − ℎ𝑗𝑗𝑗𝑗
𝑁𝑁 − 𝑝𝑝 − 1

 

RStudent 

Rstudent is similar to the studentized residual. The difference is the s(j) is used rather than s in the 
denominator. The quantity s(j) is calculated using the same formula as s, except that observation j is 
omitted. The hope is that be excluding this observation, a better estimate of σ2 will be obtained. Some 
statisticians refer to these as the studentized deleted residuals. 

𝑡𝑡𝑗𝑗 =
𝑒𝑒𝑗𝑗

𝑠𝑠(𝑗𝑗)�1 − ℎ𝑗𝑗𝑗𝑗
 

If the regression assumptions of normality are valid, a single value of the RStudent has a t distribution with 
N - 2 degrees of freedom. It is reasonable to consider |RStudent| > 2 as outliers. 
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DFFITS 

DFFITS is the standardized difference between the predicted value with and without that observation. The 
formula for DFFITS is 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑗𝑗 =
𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑗𝑗)
𝑠𝑠(𝑗𝑗)�ℎ𝑗𝑗𝑗𝑗

 

= 𝑡𝑡𝑗𝑗�
ℎ𝑗𝑗𝑗𝑗

1 − ℎ𝑗𝑗𝑗𝑗
 

The values of𝑦𝑦�𝑗𝑗(𝑗𝑗) and 𝑠𝑠2(𝑗𝑗) are found by removing observation j before the doing the calculations. It 
represents the number of estimated standard errors that the fitted value changes if the jth observation is 
omitted from the data set. If |DFFITS| > 1, the observation should be considered to be influential with 
regards to prediction. 

Cook’s D 

The DFFITS statistic attempts to measure the influence of a single observation on its fitted value. Cook’s 
distance (Cook’s D) attempts to measure the influence each observation on all N fitted values. The formula 
for Cook’s D is 

𝐷𝐷𝑗𝑗 =
∑ 𝑤𝑤𝑗𝑗�𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑖𝑖)�2𝑁𝑁
𝑖𝑖=1

𝑝𝑝𝑠𝑠2
 

The 𝑦𝑦�𝑗𝑗(𝑖𝑖) are found by removing observation i before the calculations. Rather than go to all the time of 
recalculating the regression coefficients N times, we use the following approximation 

𝐷𝐷𝑗𝑗 =
𝑤𝑤𝑗𝑗𝑒𝑒𝑗𝑗2ℎ𝑗𝑗𝑗𝑗

𝑝𝑝𝑠𝑠2�1 − ℎ𝑗𝑗𝑗𝑗�
2 

This approximation is exact when no weight variable is used.  

A Cook’s D value greater than one indicates an observation that has large influence. Some statisticians have 
suggested that a better cutoff value is 4 / (N - 2). 
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CovRatio 

This diagnostic flags observations that have a major impact on the generalized variance of the regression 
coefficients. A value exceeding 1.0 implies that the ith observation provides an improvement, i.e., a reduction 
in the generalized variance of the coefficients. A value of CovRatio less than 1.0 flags an observation that 
increases the estimated generalized variance. This is not a favorable condition. 

The general formula for the CovRatio is 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑗𝑗 =
det �𝑠𝑠(𝑗𝑗)2�𝑿𝑿(𝒋𝒋)′𝑾𝑾𝑾𝑾(𝒋𝒋)�−1�

det[𝑠𝑠2(𝑿𝑿′𝑾𝑾𝑾𝑾)−1]  

=
1

1 − ℎ𝑗𝑗𝑗𝑗
�
𝑠𝑠(𝑗𝑗)2

𝑠𝑠2
�
𝑝𝑝

 

where p = 2 if the intercept is fit or 1 if not. 

Belsley, Kuh, and Welsch (1980) give the following guidelines for the CovRatio: 

• If CovRatio > 1 + 3p / N then omitting this observation significantly damages the precision of at least 
some of the regression estimates. 

• If CovRatio < 1 - 3p / N then omitting this observation significantly improves the precision of at least 
some of the regression estimates.  

DFBETAS 

The DFBETAS criterion measures the standardized change in a regression coefficient when an observation is 
omitted. The formula for this criterion is 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑘𝑘𝑘𝑘 =
𝑏𝑏𝑘𝑘 − 𝑏𝑏𝑘𝑘(𝑗𝑗)
𝑠𝑠(𝑗𝑗)�𝑐𝑐𝑘𝑘𝑘𝑘

 

where 𝑐𝑐𝑘𝑘𝑘𝑘 is a diagonal element of the inverse matrix (𝑿𝑿′𝑾𝑾𝑾𝑾)−𝟏𝟏. 

Belsley, Kuh, and Welsch (1980) recommend using a cutoff of  2/√𝑁𝑁 when N is greater than 100. When N is 
less than 100, others have suggested using a cutoff of 1.0 or 2.0 for the absolute value of DFBETAS. 

Press Value 

PRESS is an acronym for prediction sum of squares. It was developed for use in variable selection to validate 
a regression model. To calculate PRESS, each observation is individually omitted. The remaining N - 1 
observations are used to calculate a regression and estimate the value of the omitted observation. This is 
done N times, once for each observation. The difference between the actual Y value and the predicted Y with 
the observation deleted is called the prediction error or PRESS residual. The sum of the squared prediction 
errors is the PRESS value. The smaller PRESS is, the better the predictability of the model. 

The formula for PRESS is 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑗𝑗)�2
𝑁𝑁

𝑗𝑗=1
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Press R-Squared 

The PRESS value above can be used to compute an 𝑅𝑅2-like statistic, called R2Predict, which reflects the 
prediction ability of the model. This is a good way to validate the prediction of a regression model without 
selecting another sample or splitting your data. It is very possible to have a high 𝑅𝑅2 and a very low R2Predict. 
When this occurs, it implies that the fitted model is data dependent. This R2Predict ranges from below zero 
to above one. When outside the range of zero to one, it is truncated to stay within this range. 

𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 = 1 −
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 

Sum |Press residuals| 

This is the sum of the absolute value of the PRESS residuals or prediction errors. If a large value for the PRESS 
is due to one or a few large PRESS residuals, this statistic may be a more accurate way to evaluate 
predictability. This quantity is computed as 

�|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| = �𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑗𝑗)�
𝑁𝑁

𝑗𝑗=1

 

Bootstrapping 
Bootstrapping was developed to provide standard errors and confidence intervals for regression coefficients 
and predicted values in situations in which the standard assumptions are not valid. In these nonstandard 
situations, bootstrapping is a viable alternative to the corrective action suggested earlier. The method is 
simple in concept, but it requires extensive computation time. 

The bootstrap is simple to describe. You assume that your sample is actually the population and you draw B 
samples (B is over 1000) of size N from your original sample with replacement. With replacement means 
that each observation may be selected more than once. For each bootstrap sample, the regression results 
are computed and stored.  

Suppose that you want the standard error and a confidence interval of the slope. The bootstrap sampling 
process has provided B estimates of the slope. The standard deviation of these B estimates of the slope is 
the bootstrap estimate of the standard error of the slope. The bootstrap confidence interval is found by 
arranging the B values in sorted order and selecting the appropriate percentiles from the list. For example, a 
90% bootstrap confidence interval for the slope is given by fifth and ninety-fifth percentiles of the bootstrap 
slope values. The bootstrap method can be applied to many of the statistics that are computed in 
regression analysis.  

The main assumption made when using the bootstrap method is that your sample approximates the 
population fairly well. Because of this assumption, bootstrapping does not work well for small samples in 
which there is little likelihood that the sample is representative of the population. Bootstrapping should only 
be used in medium to large samples. 

When applied to linear regression, there are two types of bootstrapping that can be used. See Neter, Kutner, 
Nachtsheim, Wasserman (1996) page 430. 
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Modified Residuals 
Davison and Hinkley (1999) page 279 recommend the use of a special rescaling of the residuals when 
bootstrapping to keep results unbiased. These modified residuals are calculated using 

𝑒𝑒𝑗𝑗∗ =
𝑒𝑒𝑗𝑗

�
1 − ℎ𝑗𝑗𝑗𝑗
𝑤𝑤𝑗𝑗

− 𝑒̅𝑒∗ 

where 

𝑒̅𝑒∗ =
∑ 𝑤𝑤𝑗𝑗𝑁𝑁
𝑗𝑗=1 𝑒𝑒𝑗𝑗∗

∑ 𝑤𝑤𝑗𝑗𝑁𝑁
𝑗𝑗=1

 

Bootstrap the Observations 
The bootstrap samples are selected from the original sample of X and Y pairs. This method is appropriate 
for data in which both X and Y have been selected at random. That is, the X values were not predetermined, 
but came in as measurements just as the Y values.  

An example of this situation would be if a population of individuals is sampled and both Y and X are 
measured on those individuals only after the sample is selected. That is, the value of X was not used in the 
selection of the sample. 

Bootstrap the Residuals 
The bootstrap samples are constructed using the modified residuals. In each bootstrap sample, the 
randomly sampled modified residuals are added to the original fitted values forming new values of Y. This 
method forces the original structure of the X values to be retained in every bootstrap sample. 

This method is appropriate for data obtained from a designed experiment in which the values of X are 
preset by the experimental design. 

Because the residuals are sampled and added back at random, the method must assume that the variance 
of the residuals is constant. If the sizes of the residuals are proportional to X, this method should not 
be used. 

Bootstrap Prediction Intervals 
Bootstrap confidence intervals for the mean of Y given X are generated from the bootstrap sample in the 
usual way. To calculate prediction intervals for the predicted value (not the mean) of Y given X requires a 
modification to the predicted value of Y to account for the variation of Y about its mean. This modification of 
the predicted Y values in the bootstrap sample, suggested by Davison and Hinkley, is as follows. 

𝑦𝑦�+ = 𝑦𝑦� − 𝑥𝑥(𝑏𝑏1∗ − 𝑏𝑏1) + 𝑒𝑒+∗  

where 𝑒𝑒+∗  is a randomly selected modified residual. By adding the randomly sampled residual we have 
added an appropriate amount of variation to represent the variance of individual Y’s about their mean 
value. 
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Randomization Test 
Because of the strict assumptions that must be made when using this procedure to test hypotheses 
about the slope, NCSS also includes a randomization test as outlined by Edgington (1987). Randomization 
tests are becoming more and more popular as the speed of computers allows them to be computed in 
seconds rather than hours. 

A randomization test is conducted by enumerating all possible permutations of the dependent variable 
while leaving the independent variable in the original order. The slope is calculated for each permutation 
and the number of permutations that result in a slope with a magnitude greater than or equal to the 
actual slope is counted. Dividing this count by the number of permutations tried gives the significance 
level of the test.  

For even moderate sample sizes, the total number of permutations is in the trillions, so a Monte Carlo 
approach is used in which the permutations are found by random selection rather than complete 
enumeration. Edgington suggests that at least 1,000 permutations be selected. We suggest that this be 
increased to 10,000. 

Data Structure 
The data are entered as two variables. If weights or frequencies are available, they are entered separately in 
other variables. An example of data appropriate for this procedure is shown below. These data are the 
heights and weights of twenty individuals. The data are contained in the LINREG1 database. We suggest that 
you open this database now so that you can follow along with the examples. 

LinReg1 Dataset (Subset) 

Height Weight 
64 159 
63 155 
67 157 
60 125 
52 103 
58 122 
56 101 
52 82 
79 228 
76 199 
73 195 

Missing Values 
Rows with missing values in the variables being analyzed are ignored. If data are present on a row for all but 
the dependent variable, a predicted value and confidence limits are generated for that row.  
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Example 1 – Running a Linear Regression Analysis 
This section presents an example of how to run a linear regression analysis of the data in the LinReg1 
dataset. In this example, we will run a regression of Height on Weight. Predicted values of Height are wanted 
at Weight values equal to 90, 100, 150, 200, and 250. 

This regression program outputs over thirty different reports and plots, many of which contain duplicate 
information. For the purposes of annotating the output, we will output all the reports. (Normally, you would 
only select a few of these reports.) 

Setup 
To run this example, complete the following steps: 

1 Open the LinReg1 example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select LinReg1 and click OK. 

2 Specify the Linear Regression and Correlation procedure options 
• Find and open the Linear Regression and Correlation procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 1 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Y: Dependent Variable(s) ....................................... Height 
X: Independent Variable ......................................... Weight 
 

Reports Tab 


Alphas, Confidence Level, Power, and Notes 
 ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Compute Power ...................................................... Checked 
Show Notes ............................................................ Checked 

Select Reports 


All Available Reports ............................................... Checked (click the Check All button) 
Predict Y at these X Values .................................... 90 100 150 200 250 

Resampling 


Random Seed ......................................................... 3118927 (for reproducibility) 
Perform Randomization Tests ................................ Checked 
  Monte Carlo Samples ........................................... 1000 
Calculate Bootstrap Confidence Intervals for .......... Checked 
Regression Estimates and Predicted Values 

Bootstrap Calculation Options 
Samples .................................................................. 1000 
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Plots Tab 


All Available Plots ................................................... Checked (click the Check All button) 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 

Y vs X Linear Regression Plot 
 
Y vs X Linear Regression Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

The plot shows the data and the linear regression line. This plot is very useful for finding outliers and 
nonlinearities. It gives you a good feel for how well the linear regression model fits the data. 
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Run Summary 
 
Run Summary 
───────────────────────────────────────────────────────────────────────── 
Item Value Rows Value 
───────────────────────────────────────────────────────────────────────────────────────────────────────── 

Dependent Variable (Y) Height Rows Processed 26 
Independent Variable (X) Weight Rows Used in Estimation 20 
Frequency Variable None Rows with X Missing 3 
Weight Variable None Rows with Y Missing 3 
Intercept 35.1337   
Slope 0.1932   
R² 0.9738   
Correlation 0.9868   
Coefficient of Variation 0.0226   
Mean Square Error (MSE) 1.970176   
Square Root of MSE 1.40363   
───────────────────────────────────────────────────────────────────────── 
 

This report summarizes the linear regression results. It presents the variables used, the number of rows 
used, and the basic least squares results. These values are repeated later in specific reports, so they will not 
be discussed further here. 

Coefficient of Variation 

The coefficient of variation is a relative measure of dispersion, computed by dividing the square root of the 
mean square error by the mean of Y. By itself, it has little value, but it can be useful in comparative studies. 

𝐶𝐶𝐶𝐶 =
√𝑀𝑀𝑀𝑀𝑀𝑀
𝑌𝑌�

 

Summary Statement 
 
Summary Statement 
───────────────────────────────────────────────────────────────────────── 
The equation of the straight line relating Height and Weight is estimated as: Height = (35.1337) + (0.1932) * Weight 
using the 20 observations in this dataset. The y-intercept, the estimated value of Height when Weight is zero, is 
35.1337 with a standard error of 1.0887. The slope, the estimated change in Height per unit change in Weight, is 
0.1932 with a standard error of 0.0075. The value of R², the proportion of the variation in Height that can be 
accounted for by variation in Weight, is 0.9738. The correlation between Height and Weight is 0.9868. 
 
A significance test that the slope is zero resulted in a t-value of 25.8679. The significance level of this t-test is 
0.0000. Since 0.0000 < 0.05, the hypothesis that the slope is zero is rejected. 
 
The estimated slope is 0.1932. The lower limit of the 95% confidence interval for the slope is 0.1775 and the upper 
limit is 0.2089. The estimated intercept is 35.1337. The lower limit of the 95% confidence interval for the intercept is 
32.8464 and the upper limit is 37.4209.  
───────────────────────────────────────────────────────────────────────── 
 

This report explains the results in text format. 
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Descriptive Statistics 
 
Descriptive Statistics 
───────────────────────────────────────────────────────────────────────── 
 Model Variable 
 ─────────────────── 
Parameter Dependent Independent 
───────────────────────────────────────────────────────────────── 

Variable Name Height Weight 
Count 20 20 
Mean 62.1 139.6 
Standard Deviation 8.441128 43.1221 
Minimum 51 82 
Maximum 79 228 
───────────────────────────────────────────────────────────────────────── 
 

This report presents the mean, standard deviation, minimum, and maximum of the two variables. It is 
particularly useful for checking that the correct variables were selected. 

Regression Estimation  
 
Regression Estimation 
───────────────────────────────────────────────────────────────────────── 
 Intercept Slope 
Parameter B(0) B(1) 
────────────────────────────────────────────────────────────────────────── 

Regression Coefficients 35.1337 0.1932 
Lower 95% Confidence Limit 32.8464 0.1775 
Upper 95% Confidence Limit 37.4209 0.2089 
Standard Error 1.0887 0.0075 
Standardized Coefficient 0.0000 0.9868 
 
T-Statistic 32.2716 25.8679 
P-Value (T-Test) 0.0000 0.0000 
P-Value (Randomization Test*)  0.0010 
Reject H0 (Alpha = 0.05) Yes Yes 
Power† 1.0000 1.0000 
 
Regression of Y on X 35.1337 0.1932 
Inverse Regression from X on Y 34.4083 0.1984 
Orthogonal Regression of Y and X 35.1076 0.1934 
────────────────────────────────────────────────────────────────────────── 

 
Estimated Model 
──────────────────────────────────────────────────────────────── 

Height = 
(35.1336680743148) + (0.193168566802902) * (Weight) 
──────────────────────────────────────────────────────────────── 

───────────────────────────────────────────────────────────────────────── 
* Number of Monte Carlo Samples = 1000, User-Entered Random Seed = 3118927. 
† Power was calculated using the observed T-Statistic as the population effect size with a significance level of Alpha = 0.05. 
 
Notes: 
The above report shows the least-squares estimates of the intercept and slope followed by the corresponding standard errors, 
confidence intervals, and hypothesis tests. Note that these results are based on several assumptions that should be validated 
before they are used.  
 

This section reports the values and significance tests of the regression coefficients. Before using this report, 
check that the assumptions are reasonable by looking at the tests of assumptions report. 
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Regression Coefficients 

The regression coefficients are the least-squares estimates of the Y-intercept and the slope. The slope 
indicates how much of a change in Y occurs for a one-unit change in X. 

Lower and Upper 95% Confidence Limits  

These are the lower and upper values of a 100(1 - α)% interval estimate for 𝛽𝛽𝑗𝑗 based on a t-distribution with 
N - 2 degrees of freedom. This interval estimate assumes that the residuals for the regression model are 
normally distributed.  

The formulas for the lower and upper confidence limits are 

𝑏𝑏𝑗𝑗 ± 𝑡𝑡1−𝛼𝛼/2,𝑛𝑛−2𝑠𝑠𝑏𝑏𝑗𝑗 

Standard Error 

The standard error of the regression coefficient, 𝑠𝑠𝑏𝑏𝑗𝑗 , is the standard deviation of the estimate. It provides a 
measure of the precision of the estimated regression coefficient. It is used in hypothesis tests or confidence 
limits. 

Standardized Coefficient 

Standardized regression coefficients are the coefficients that would be obtained if you standardized both 
variables. Here standardizing is defined as subtracting the mean and dividing by the standard deviation of a 
variable. A regression analysis on these standardized variables would yield these standardized coefficients. 

The formula for the standardized regression coefficient is: 

𝑏𝑏1,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏1 �
𝑠𝑠𝑋𝑋
𝑠𝑠𝑌𝑌
� 

where 𝑠𝑠𝑌𝑌 and 𝑠𝑠𝑋𝑋 are the standard deviations for the dependent and independent variables, respectively. 

Note that in the case of linear regression, the standardized coefficient is equal to the correlation between 
the two variables. 

T-Statistic  

These are the t-test values for testing the hypotheses that the intercept and the slope are zero versus the 
alternative that they are nonzero. These t-values have N - 2 degrees of freedom. 

To test that the slope is equal to a hypothesized value other than zero, inspect the confidence limits. If the 
hypothesized value is outside the confidence limits, the hypothesis is rejected. Otherwise, it is not rejected.  

P-Value (T-Test) 

This is the two-sided p-value for the significance test of the regression coefficient. The p-value is the 
probability that this t-statistic will take on a value at least as extreme as the actually observed value, 
assuming that the null hypothesis is true (i.e., the regression estimate is equal to zero). If the p-value is less 
than alpha, say 0.05, the null hypothesis is rejected. 
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P-Value (Randomization Test) 

This is the two-sided p-value for the randomization test of whether the slope is zero. Since this value is 
based on a randomization test, it does not require all of the assumptions that the t-test does. The number 
of Monte Carlo samples of the permutation distribution of the slope is shown in parentheses. 

Reject H0 (Alpha = 0.05) 

This value indicates whether the null hypothesis was rejected. Note that the level of significance was 
specified as the value of Alpha. 

Power 

Power is the probability of rejecting the null hypothesis that the regression coefficient is zero when in truth, 
the regression coefficient is some value other than zero. The power is calculated for the case when the 
estimated coefficient is the actual coefficient, the estimate variance is the true variance, and Alpha is the 
given value.  

High power is desirable. High power means that there is a high probability of rejecting the null hypothesis 
when the null hypothesis is false. This is a critical measure of sensitivity in hypothesis testing. This estimate 
of power is based upon the assumption that the residuals are normally distributed. 

Regression of Y on X 

These are the usual least squares estimates of the intercept and slope from a linear regression of Y on X. 
These quantities were given earlier and are reproduced here to allow easy comparisons. 

Regression of X on Y 

These are the estimated intercept and slope derived from the coefficients of linear regression of X on Y. 
These quantities may be useful in calibration and inverse prediction. 

Orthogonal Regression of Y and X 

These are the estimates of the intercept and slope from an orthogonal regression of Y on X. This equation 
minimizes the sum of the squared perpendicular distances between the points and the regression line. 

Estimated Model 

This is the least squares regression line presented in double precision. Besides showing the regression 
model in long form, it may be used as a transformation by copying and pasting it into the Transformation 
portion of the spreadsheet. 
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Bootstrap Confidence Intervals for Regression Coefficient Estimates 
 
Bootstrap Confidence Intervals for Regression Coefficient Estimates 
───────────────────────────────────────────────────────────────────────── 
 Estimation Results  Bootstrap Confidence Interval Limits 
───────────────────────  ──────────────────────────── 
Parameter Estimate | Confidence Level Lower Upper 
──────────────────────────────────────────────────────────────────────────────────────────────────── 

 
Intercept 
Original Value 35.1337 | 90% 33.4868 36.7965 
Bootstrap Mean 35.1470 | 95% 33.1653 37.3351 
Bias (BM - OV) 0.0133 | 99% 32.6453 38.1047 
Bias Corrected Value 35.1204     
Standard Error 1.0327     
 
Slope 
Original Value 0.1932 | 90% 0.1815 0.2049 
Bootstrap Mean 0.1931 | 95% 0.1782 0.2075 
Bias (BM - OV) -0.0001 | 99% 0.1703 0.2108 
Bias Corrected Value 0.1932     
Standard Error 0.0071     
 
Correlation 
Original Value 0.9868 | 90% 0.9797 0.9970 
Bootstrap Mean 0.9867 | 95% 0.9788 1.0000 
Bias (BM - OV) -0.0001 | 99% 0.9766 1.0000 
Bias Corrected Value 0.9869     
Standard Error 0.0054     
 
R² 
Original Value 0.9738 | 90% 0.9597 0.9937 
Bootstrap Mean 0.9736 | 95% 0.9580 1.0000 
Bias (BM - OV) -0.0002 | 99% 0.9535 1.0000 
Bias Corrected Value 0.9740     
Standard Error 0.0105     
 
Standard Error of Estimate 
Original Value 1.4036 | 90% 1.1608 1.8326 
Bootstrap Mean 1.3204 | 95% 1.1275 1.9126 
Bias (BM - OV) -0.0833 | 99% 1.0015 2.0661 
Bias Corrected Value 1.4869     
Standard Error 0.2051     
 
Orthogonal Regression Intercept 
Original Value 35.1076 | 90% 33.4494 36.7878 
Bootstrap Mean 35.1205 | 95% 33.1306 37.3240 
Bias (BM - OV) 0.0129 | 99% 32.6325 38.1117 
Bias Corrected Value 35.0946     
Standard Error 1.0383     
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Orthogonal Regression Slope 
Original Value 0.1934 | 90% 0.1817 0.2051 
Bootstrap Mean 0.1933 | 95% 0.1785 0.2078 
Bias (BM - OV) -0.0001 | 99% 0.1703 0.2111 
Bias Corrected Value 0.1934     
Standard Error 0.0072     
───────────────────────────────────────────────────────────────────────── 
Number of Bootstrap Samples = 1000, Sampling Method = Observations, Confidence Interval Method = Reflection, 
User-Entered Random Seed = 3118927. 
 
Notes: 
The main purpose of this report is to present the bootstrap confidence intervals of various parameters. All gross outliers should 
have been removed. The sample size should be at least 50 and the sample should be "representative" of the population from 
which it was drawn. 
 

This report provides bootstrap estimates of the slope and intercept of the least squares regression line and 
the orthogonal regression line, the correlation coefficient, and other linear regression quantities. Details of 
the bootstrap method were presented earlier in this chapter. 

Original Value 

This is the parameter estimate obtained from the complete sample without bootstrapping. 

Bootstrap Mean 

This is the average of the parameter estimates of the bootstrap samples. 

Bias (BM - OV) 

This is an estimate of the bias in the original estimate. It is computed by subtracting the original value from 
the bootstrap mean. 

Bias Corrected Value 

This is an estimated of the parameter that has been corrected for its bias. The correction is made by 
subtracting the estimated bias from the original parameter estimate. 

Standard Error 

This is the bootstrap method’s estimate of the standard error of the parameter estimate. It is simply the 
standard deviation of the parameter estimate computed from the bootstrap estimates. 

Conf. Level 

This is the confidence coefficient of the bootstrap confidence interval given to the right. 

Bootstrap Confidence Limits (Lower and Upper) 

These are the limits of the bootstrap confidence interval with the confidence coefficient given to the left. 
These limits are computed using the confidence interval method (percentile or reflection) designated on the 
Bootstrap panel. 

Note that to be accurate, these intervals must be based on over a thousand bootstrap samples and the 
original sample must be representative of the population. 
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Bootstrap Histograms of Regression Coefficient Estimates 
 
Bootstrap Histograms of Regression Coefficient Estimates 
───────────────────────────────────────────────────────────────────────── 

     
 

     
 
(3 more histograms are shown) 
 

Each histogram shows the distribution of the corresponding parameter estimate. 
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Correlation and R² 
 
Correlation and R² 
───────────────────────────────────────────────────────────────────────── 
   Spearman 
 Pearson  Rank 
 Correlation  Correlation 
Parameter Coefficient R² Coefficient 
───────────────────────────────────────────────────────────────────────────────────────────────── 

Estimated Value 0.9868 0.9738 0.9759 
Lower 95% Conf. Limit (r distribution) 0.9646   
Upper 95% Conf. Limit (r distribution) 0.9945   
Lower 95% Conf. Limit (Fisher's z) 0.9662  0.9387 
Upper 95% Conf. Limit (Fisher's z) 0.9949  0.9906 
Adjusted (Rbar)  0.9723  
 
T-Statistic for Testing H0: Rho = 0 25.8679 25.8679 18.9539 
P-Value for Testing H0: Rho = 0 0.0000 0.0000 0.0000 
P-Value of Randomization Test* 0.0010   
───────────────────────────────────────────────────────────────────────── 
* Number of Monte Carlo Samples = 1000, User-Entered Random Seed = 3118927. 
 
Notes: 
The confidence interval for the Pearson correlation assumes that X and Y follow the bivariate normal distribution. This is a 
different assumption from linear regression which assumes that X is fixed and Y is normally distributed.  
 
Two confidence intervals are given. The first is based on the exact distribution of Pearson's correlation. The second is based on 
Fisher's z transformation which approximates the exact distribution using the normal distribution. Why are both provided? 
Because most books only mention Fisher's approximate method, it will often be needed to do homework. However, the exact 
methods should be used whenever possible. 
 
The confidence limits can be used to test hypotheses about the correlation. To test the hypothesis that rho is a specific value, say 
r0, check to see if r0 is between the confidence limits. If it is, the null hypothesis that rho = r0 is not rejected. If r0 is outside the 
limits, the null hypothesis is rejected.  
 
Spearman's Rank correlation is calculated by replacing the original data with their ranks. This correlation is used when some of 
the assumptions may be invalid. 
 

This report provides results about Pearson’s correlation, R2, and Spearman’s rank correlation. 

Pearson Correlation Coefficient 

Details of the calculation of this value were given earlier in the chapter. Remember that this value is an 
index of the strength of the linear association between X and Y. The range of values is from -1 to 1. Strong 
association occurs when the magnitude of the correlation is close to one. Low correlations are those near 
zero. 

Two sets of confidence limits are given. The first is a set of exact limits computed from the distribution of 
the correlation coefficient. These limits assume that X and Y follow the bivariate normal distribution. The 
second set of limits are limits developed by R. A. Fisher as an approximation to the exact limits. The 
approximation is quite good as you can see by comparing the two sets of limits. The second set is provided 
because they are often found in statistics books. In most cases, you should use the first set based on the r 
distribution because they are exact. You may want to compare these limits with those found for the 
correlation in the Bootstrap report. 

The two-sided hypothesis test and probability level are for testing whether the correlation is zero. 
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P-Value of Randomization Test 

This is the two-sided p-value for the randomization test of whether the slope is zero. This probability value 
may also be used to test whether the Pearson correlation is zero. Since this value is based on a 
randomization test, it does not require all of the assumptions that the parametric test does. The number of 
Monte Carlo samples of the permutation distribution of the slope is shown in parentheses. 

Spearman Rank Correlation Coefficient 

The Spearman’s rank correlation is simply the Pearson correlation computed on the ranks of X and Y rather 
than on the actual data. By using the ranks, some of the assumptions may be relaxed. However, the 
interpretation of the correlation is much more difficult. 

The confidence interval for this correlation is calculated using the Fisher’s z transformation of the rank 
correlation. 

The two-sided hypothesis test and probability level are for testing whether the rank correlation is zero. 

R-Squared 

𝑅𝑅2, officially known as the coefficient of determination, is defined as 

𝑅𝑅2 =
𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 

𝑅𝑅2 is probably the most popular statistical measure of how well the regression model fits the data. 𝑅𝑅2 may 
be defined either as a ratio or a percentage. Since we use the ratio form, its values range from zero to one. 
A value of 𝑅𝑅2 near zero indicates no linear relationship between the Y and X, while a value near one 
indicates a perfect linear fit. Although popular, 𝑅𝑅2 should not be used indiscriminately or interpreted 
without scatter plot support. Following are some qualifications on its interpretation:  

1. Linearity. 𝑅𝑅2 does not measure the appropriateness of a linear model. It measures the strength of 
the linear component of the model. Suppose the relationship between X and Y was a perfect circle. 
The 𝑅𝑅2 value of this relationship would be zero. 

2. Predictability. A large 𝑅𝑅2 does not necessarily mean high predictability, nor does a low 𝑅𝑅2 necessarily 
mean poor predictability.  

3. No-intercept model. The definition of 𝑅𝑅2 assumes that there is an intercept in the regression model. 
When the intercept is left out of the model, the definition of 𝑅𝑅2 changes dramatically. The fact that 

your R2 𝑅𝑅2 value increases when you remove the intercept from the regression model does not 
reflect an increase in the goodness of fit. Rather, it reflects a change in the underlying meaning of 
𝑅𝑅2. 

4. Sample size. 𝑅𝑅2 is highly sensitive to the number of observations. The smaller the sample size, the 
larger its value. 

Adjusted R-Squared 

This is an adjusted version of 𝑅𝑅2. The adjustment seeks to remove the distortion due to a small sample size. 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 = 1 − (1 − 𝑅𝑅2) �
𝑁𝑁 − 1
𝑁𝑁 − 2

� 
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Analysis of Variance 
 
Analysis of Variance 
───────────────────────────────────────────────────────────────────────── 
  Sum of Mean    
Source DF Squares Square F-Ratio P-Value Power* 
───────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 1 77128.2 77128.2    
Slope 1 1318.337 1318.337 669.1468 0.0000 1.0000 
Error 18 35.46317 1.970176    
   Lack of Fit 16 34.96317 2.185198 8.7408 0.1074  
   Pure Error 2 0.5 0.25    
Adjusted Total 19 1353.8 71.25263    
Total 20 78482     
───────────────────────────────────────────────────────────────────────────────────────────────────────── 

 
Standard Deviation of Residuals 
──────────────────────────────────────────── 

s = Square Root(1.970176) = 1.40363 
──────────────────────────────────────────── 

───────────────────────────────────────────────────────────────────────── 
* Power was calculated using the observed F-Ratio as the population effect size with a significance level of Alpha = 0.05. 
 
Notes: 
The above report shows the F-Ratio for testing whether the slope is zero, the degrees of freedom, and the mean square error. 
The mean square error, which estimates the variance of the residuals, is used extensively in the calculation of hypothesis tests 
and confidence intervals. 
 

An analysis of variance (ANOVA) table summarizes the information related to the sources of variation in 
data. 

Source 

This represents the partitions of the variation in Y. There are four sources of variation listed: intercept, slope, 
error, and total (adjusted for the mean).  

DF 

The degrees of freedom are the number of dimensions associated with this term. Note that each 
observation can be interpreted as a dimension in N-dimensional space. The degrees of freedom for the 
intercept, model, error, and adjusted total are 1, 1, N - 2, and N - 1, respectively. 

Sum of Squares 

These are the sums of squares associated with the corresponding sources of variation. Note that these 
values are in terms of the dependent variable, Y. The formulas for each are 

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑁𝑁𝑌𝑌�2 

𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = Σ�𝑌𝑌� − 𝑌𝑌��2 

𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = Σ�𝑌𝑌 − 𝑌𝑌��2 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = Σ(𝑌𝑌 − 𝑌𝑌�)2 

Note that the lack of fit and pure error values are provided if there are observations with identical values of 
the independent variable. 
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Mean Square 

The mean square is the sum of squares divided by the degrees of freedom. This mean square is an 
estimated variance. For example, the mean square error is the estimated variance of the residuals (the 
residuals are sometimes called the errors). 

F-Ratio 

This is the F statistic for testing the null hypothesis that the slope equals zero. This F-statistic has 1 degree of 
freedom for the numerator variance and N - 2 degrees of freedom for the denominator variance. 

P-Value 

This is the p-value for the above F test. The p-value is the probability that the test statistic will take on a value 
at least as extreme as the observed value, assuming that the null hypothesis is true. If the p-value is less 
than alpha, say 0.05, the null hypothesis is rejected. If the p-value is greater than alpha, the null hypothesis 
is accepted. 

Power 

Power is the probability of rejecting the null hypothesis that the slope is zero when it is not. 

Standard Deviation of Residuals 

s is the square root of the mean square error. It is an estimate of the standard deviation of the residuals. 

Summary Matrices 
 
Summary Matrices 
───────────────────────────────────────────────────────────────────────── 
 

Calculation Matrix 
────────────────────────────────────────────────────────────────────────────────────────────────── 

 X'X X'X X'Y X'X Inverse X'X Inverse 
Index 0 1 2 0 1 
────────────────────────────────────────────────────────────────────────────────────────────────── 

0 20 2792 1242 0.6015912 -0.003951227 
1 2792 425094 180208 -0.003951227 2.830392E-05 
2 (Y'Y)   78482   
Determinant  706616   1.415196E-06 
────────────────────────────────────────────────────────────────────────────────────────────────── 
 

 
Variance-Covariance Matrix of Regression Coefficients 
─────────────────────────────────────────────────── 

 VC(b) VC(b) 
Index 0 1 
─────────────────────────────────────────────────── 

0 1.185241 -0.007784612 
1 -0.007784612 5.576369E-05 
─────────────────────────────────────────────────── 
 

───────────────────────────────────────────────────────────────────────── 
 

This section provides the matrices from which the least square regression values are calculated and the 
variance-covariance matrix of regression coefficients. Occasionally, these values may be useful in hand 
calculations. 
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Tests of Assumptions 
 
Tests of Assumptions 
───────────────────────────────────────────────────────────────────────── 
 Test  Is the Assumption 
 Statistic  Reasonable at the 0.2 
Assumption/Test Value P-Value Level of Significance? 
────────────────────────────────────────────────────────────────────────────────────────────────────── 

 
Residuals Follow a Normal Distribution? 
Shapiro-Wilk 0.9728 0.8129 Yes 
Anderson-Darling 0.2751 0.6609 Yes 
D'Agostino Skewness -0.9590 0.3375 Yes 
D'Agostino Kurtosis 0.1205 0.9041 Yes 
D'Agostino Omnibus 0.9343 0.6268 Yes 
 
Constant Residual Variance? 
Modified Levene Test 0.0946 0.7620 Yes 
 
Relationship is a Straight Line? 
Lack of Linear Fit F(16, 2) Test 8.7408 0.1074 No 
 
No Serial Correlation? 
Evaluate the Serial-Correlation report and the Durbin-Watson test if you have equal-spaced time series data. 
───────────────────────────────────────────────────────────────────────── 
Notes: 
A "Yes" means there is not enough evidence to make this assumption seem unreasonable. This lack of evidence may be 
because the sample size is too small, the assumptions of the test itself are not met, or the assumption is valid. 
A "No" means the that the assumption is not reasonable. However, since these tests are related to sample size, you should 
assess the role of sample size in the tests by also evaluating the appropriate plots and graphs. A large dataset (say N > 500) will 
often fail at least one of the normality tests because it is hard to find a large dataset that is perfectly normal. 
 
Normality and Constant Residual Variance: 
Possible remedies for the failure of these assumptions include using a transformation of Y such as the log or square root, 
correcting data-recording errors found by looking into outliers, adding additional independent variables, using robust regression, 
or using bootstrap methods. 
 
Straight-Line: 
Possible remedies for the failure of this assumption include using nonlinear regression or polynomial regression. 
 

This report presents numeric tests of some of the assumptions made when using linear regression. The 
results of these tests should be compared to appropriate plots to determine if the assumptions are valid or 
not. 

Note that a ‘Yes’ means that there is not enough evidence to reject the assumption. This lack of assumption 
test rejection may be because the sample size is too small, or the assumptions of the test were no met. It 
does not necessarily mean that the data met assumption. Likewise, a ‘No’ may occur because the sample 
size is very large. It is almost always possible to fail a preliminary test given a large enough sample size. No 
assumption is every fits perfectly. Bottom line, you should also investigate plots designed to check the 
assumptions. 

Residuals Follow a Normal Distribution? 

This section displays the results of five normality tests of the residuals. The Shapiro-Wilk and Anderson-
Darling tests are usually considered as the best. 

Unfortunately, these tests have small statistical power (probability of detecting nonnormal data) unless the 
sample sizes are large, say over 300. Hence, if the decision is to reject normality, you can be reasonably 
certain that the data are not normal. However, if the decision is to not reject, the situation is not as clear. If 
you have a sample size of 300 or more, you can reasonably assume that the actual distribution is closely 

http://www.ncss.com/


NCSS Statistical Software NCSS.com 

Linear Regression and Correlation 

300-39 
 © NCSS, LLC. All Rights Reserved. 

approximated by the normal distribution. If your sample size is less than 300, all you know for sure is that 
there was not enough evidence in your data to reject the normality of residuals assumption. In other words, 
the data might be nonnormal, you just could not prove it. In this case, you must rely on the graphics to 
justify the normality assumption. 

Shapiro-Wilk W Test 

This test for normality, developed by Shapiro and Wilk (1965), has been found to be the most powerful test 
in most situations. It is the ratio of two estimates of the variance of a normal distribution based on a 
random sample of N observations. The numerator is proportional to the square of the best linear estimator 
of the standard deviation. The denominator is the sum of squares of the observations about the sample 
mean. W may be written as the square of the Pearson correlation coefficient between the ordered 
observations and a set of weights which are used to calculate the numerator. Since these weights are 
asymptotically proportional to the corresponding expected normal order statistics, W is roughly a measure 
of the straightness of the normal quantile-quantile plot. Hence, the closer W is to one, the more normal the 
sample is. 

The probability values for W are valid for samples in the range of 3 to 5000. 

The test is not calculated when a frequency variable is specified. 

Anderson-Darling Test 

This test, developed by Anderson and Darling (1954), is based on EDF statistics. In some situations, it has 
been found to be as powerful as the Shapiro-Wilk test. 

The test is not calculated when a frequency variable is specified. 

D’Agostino Skewness 

D’Agostino (1990) proposed a normality test based on the skewness coefficient, �𝑏𝑏1. Because the normal 
distribution is symmetrical, �𝑏𝑏1 is equal to zero for normal data. Hence, a test can be developed to 
determine if the value of �𝑏𝑏1 is significantly different from zero. If it is, the data are obviously nonnormal. 
The test statistic is, under the null hypothesis of normality, approximately normally distributed. The 
computation of this statistic is restricted to sample sizes greater than 8. The formula and further details are 
given in the Descriptive Statistics chapter. 

D’Agostino Kurtosis 

D’Agostino (1990) proposed a normality test based on the kurtosis coefficient, 𝑏𝑏2. For the normal 
distribution, the theoretical value of 𝑏𝑏2 is 3. Hence, a test can be developed to determine if the value of 𝑏𝑏2 is 
significantly different from 3. If it is, the residuals are obviously nonnormal. The test statistic is, under the 
null hypothesis of normality, approximately normally distributed for sample sizes N > 20. The formula and 
further details are given in the Descriptive Statistics chapter. 

D’Agostino Omnibus 

D’Agostino (1990) proposed a normality test that combines the tests for skewness and kurtosis. The statistic, 
𝐾𝐾2, is approximately distributed as a chi-square with two degrees of freedom. 
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Constant Residual Variance? 

Linear regression assumes that the residuals have constant variance. The validity of this assumption can be 
checked by looking at a plot of the absolute values of the residuals versus the X variable. The modified 
Levene test may be used when a numerical answer is needed.  

If your data fail this test, you may want to use a logarithm transformation or a weighted regression. 

Modified Levene Test 

The modified Levene test can be used to evaluate the validity of the assumption of constant variance. It has 
been shown to be reliable even when the residuals do not follow a normal distribution. The mathematical 
details of the test were presented earlier in this chapter. 

Relationship is a Straight Line? 

Linear regression assumes that the relationship between X and Y is a straight line (linear). The validity of this 
assumption can be checked by looking at the plot Y versus X and at the plot of the residuals versus X. The 
lack of fit test may be used when a numerical answer is needed.  

If your data fail this test, you may want to use a different model which accounts for the curvature. The 
Growth and Other Models procedure in curve fitting is a good choice when curvature exists in your data. 

Lack of Linear Fit Test 

The lack-of-fit test is used to test for a departure from the linear fit. This test requires that there are multiple 
observations for at least one X value. When such is the case, an estimate of pure error and lack of fit can be 
found, and an F test created. The mathematical details of the test were presented earlier in this chapter.  

Serial Correlation of Residuals and Durbin-Watson Test for Serial 
Correlation 

 
Serial Correlation of Residuals 
───────────────────────────────────────────────────────────────────────── 
 Serial  Serial  Serial 
Lag Correlation Lag Correlation Lag Correlation 
──────────────────────────────────────────────────────────────────────────────────── 

1 0.1029 9 -0.2353 17  
2 -0.4127* 10 -0.0827 18  
3 0.0340 11 -0.0316 19  
4 0.2171 12 -0.0481 20  
5 -0.1968 13 0.0744 21  
6 -0.0194 14 0.0073 22  
7 0.2531 15  23  
8 -0.0744 16  24  
───────────────────────────────────────────────────────────────────────── 
Notes: 
Each serial correlation is the Pearson correlation calculated between the original series of residuals and the residuals lagged the 
specified number of periods. This feature of residuals is only meaningful for data obtained sorted in time order. One of the 
assumptions is that none of these serial correlations is significant. Starred correlations are those for which |Fisher's Z| > 1.645 
which indicates whether the serial correlation is "large." 
 
If serial correlation is detected in time series data, the remedy is to account for it either by replacing Y with first differences or by 
fitting the serial pattern using a method such as that proposed by Cochrane and Orcutt. 
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Durbin-Watson Test For Serial Correlation 
───────────────────────────────────────────────────────────────────────── 
 Test Statistic   
 Value to Test  Reject H0 
Test Type H0: ρ(1) = 0 P-Value at α = 0.2? 
────────────────────────────────────────────────────────────────────────────────────────────── 

Positive Serial Correlation Test 1.6978 0.2366 No 
Negative Serial Correlation Test 1.6978 0.7460 No 
───────────────────────────────────────────────────────────────────────── 
Notes: 
The Durbin-Watson test was created to test for first-order serial correlation in regression data taken over time. If the rows of your 
dataset do not represent successive time periods, you should ignore this test. 
 
This report gives the probability of rejecting the null hypothesis of no first-order serial correlation. Possible remedies for serial 
correlation were given in the Notes to the Serial Correlation report, above. 
 

This section reports on the autocorrelation structure of the residuals. Of course, if your data were not taken 
through time, this section should be ignored. 

Lag 

The lag, k, is the number of periods back.  

Serial Correlation 

The serial correlation reported here is the sample autocorrelation coefficient of lag k. It is computed as 

𝑟𝑟𝑘𝑘 =
∑𝑒𝑒𝑖𝑖−𝑘𝑘𝑒𝑒𝑖𝑖
∑ 𝑒𝑒𝑖𝑖2

       for 𝑘𝑘 = 1, 2, … , 24 

The distribution of these autocorrelations may be approximated by the distribution of the regular 
correlation coefficient. Using this fact, Fisher’s Z transformation may be used to find large autocorrelations. 
If the Fisher’s Z transformation of the autocorrelation is greater than 1.645, the autocorrelation is assumed 
to be large and the observation is starred. 

Durbin-Watson Test Statistic  

The Durbin-Watson test is often used to test for positive or negative, first-order, serial correlation. It is 
calculated as follows 

𝐷𝐷𝐷𝐷 =
∑ �𝑒𝑒𝑗𝑗 − 𝑒𝑒𝑗𝑗−1�

2𝑁𝑁
𝑗𝑗=2

∑ 𝑒𝑒𝑗𝑗2𝑁𝑁
𝑗𝑗=1

 

The distribution of this test is mathematically difficult because it involves the X values. Originally, Durbin-Watson 
(1950, 1951) gave a pair of bounds to be used. However, there is a large range of indecision that can be found 
when using these bounds. Instead of using these bounds, NCSS calculates the exact probability using the beta 
distribution approximation suggested by Durbin-Watson (1951). This approximation has been shown to be 
accurate to three decimal places in most cases. 
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PRESS Statistics 
 
PRESS Statistics 
───────────────────────────────────────────────────────────────────────── 
 From From 
 PRESS Regular 
Parameter Residuals Residuals 
──────────────────────────────────────────────────────────────────── 

Sum of Squared Residuals 43.15799 35.46317 
Sum of |Residuals| 24.27421 22.02947 
R² 0.9681 0.9738 
───────────────────────────────────────────────────────────────────────── 
Notes: 
A PRESS residual is found by estimating the regression equation without the observation, predicting the dependent variable, and 
subtracting the predicted value from the actual value. The PRESS values are calculated from these PRESS residuals. The 
Regular values are the corresponding calculations based on the regular residuals. 
 
The PRESS values are often used to compare models in a multiple-regression variable selection. They show how well the model 
predicts observations that were not used in the estimation. 
 

This section reports on the PRESS statistics. The regular statistics, computed on all of the data, are provided 
to the side to make comparison between corresponding values easier. 

Sum of Squared PRESS Residuals 

PRESS is an acronym for prediction sum of squares. It was developed for use in variable selection to validate 
a regression model. To calculate PRESS, each observation is individually omitted. The remaining N - 1 
observations are used to calculate a regression and estimate the value of the omitted observation. This is 
done N times, once for each observation. The difference between the actual Y value and the predicted Y with 
the observation deleted is called the prediction error or PRESS residual. The sum of the squared prediction 
errors is the PRESS value. The smaller PRESS is, the better the predictability of the model. 

Sum of |PRESS Residuals| 

This is the sum of the absolute value of the PRESS residuals or prediction errors. If a large value for the 
PRESS is due to one or a few large PRESS residuals, this statistic may be a more accurate way to evaluate 
predictability.  

PRESS R² 

The PRESS value above can be used to compute an 𝑅𝑅2-like statistic, called R2Predict, which reflects the 
prediction ability of the model. This is a good way to validate the prediction of a regression model without 
selecting another sample or splitting your data. It is very possible to have a high 𝑅𝑅2 and a very low R2Predict. 
When this occurs, it implies that the fitted model is data dependent. This R2Predict ranges from below zero 
to above one. When outside the range of zero to one, it is truncated to stay within this range.  
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Predicted Values and Confidence Intervals of Y Means at Specific X Values 
 
Predicted Values and Confidence Intervals for Y Means at Specific X Values 
───────────────────────────────────────────────────────────────────────── 
   95% Confidence Interval 
 Predicted Standard Limits for Y Mean|X 
Weight Height Error of ───────────────── 
(X) (Yhat|X) Yhat Mean Lower Upper 
───────────────────────────────────────────────────────────────────────────────── 

90 52.51884 0.4855 51.49887 53.53881 
100 54.45052 0.4312 53.54456 55.35649 
150 64.10896 0.3233 63.42967 64.78824 
200 73.76738 0.5495 72.61294 74.92183 
250 83.42581 0.8821 81.57251 85.27911 
───────────────────────────────────────────────────────────────────────── 
The confidence interval estimates the mean of the Y values in a large sample of individuals with the stated value of X. The 
interval is only accurate if all of the linear regression assumptions are valid. 
 

The predicted values and confidence intervals of the mean response of Y given X are provided here. The 
values of X used here are specified in the Predict Y at these X Values option on the Reports tab. 

It is important to note that violations of any regression assumptions will invalidate this interval estimate. 

X 

This is the value of X at which the prediction is made. 

Predicted Y (Yhat|X) 

The predicted value of Y for the value of X indicated. 

Standard Error of Yhat Mean 

This is the estimated standard deviation of the predicted value.  

95% Confidence Interval Limits for Y Mean|X (Lower and Upper) 

These are the lower and upper limits of a 95% confidence interval estimate of the mean of Y at this value of 
X. Note that you set the confidence interval alpha on the Reports tab of the procedure input window. 
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Bootstrap Confidence Intervals and Histograms for Predicted Y Means at 
Specific X Values 

 
Bootstrap Confidence Intervals for Predicted Y Means at Specific X Values 
───────────────────────────────────────────────────────────────────────── 
 Estimation Results  Bootstrap Confidence Interval Limits 
───────────────────────  ────────────────────────────── 
Parameter Estimate | Confidence Level Lower Upper 
─────────────────────────────────────────────────────────────────────────────────────────────────────── 

 
Predicted Mean of Height when Weight = 90 
Original Value 52.51884 | 90% 51.80128 53.32835 
Bootstrap Mean 52.5252 | 95% 51.69855 53.51639 
Bias (BM - OV) 0.0064 | 99% 51.49534 53.82327 
Bias Corrected Value 52.51248     
Standard Error 0.4618     
 
Predicted Mean of Height when Weight = 100 
Original Value 54.45052 | 90% 53.82153 55.16396 
Bootstrap Mean 54.45611 | 95% 53.72358 55.34012 
Bias (BM - OV) 0.0056 | 99% 53.49232 55.54081 
Bias Corrected Value 54.44493     
Standard Error 0.4116     
 
Predicted Mean of Height when Weight = 150 
Original Value 64.10896 | 90% 63.59029 64.66124 
Bootstrap Mean 64.11069 | 95% 63.46907 64.77720 
Bias (BM - OV) 0.0017 | 99% 63.26657 64.88721 
Bias Corrected Value 64.10722     
Standard Error 0.3214     
 
Predicted Mean of Height when Weight = 200 
Original Value 73.76738 | 90% 72.84132 74.65286 
Bootstrap Mean 73.76526 | 95% 72.69940 74.84036 
Bias (BM - OV) -0.0021 | 99% 72.16286 75.20052 
Bias Corrected Value 73.76951     
Standard Error 0.5405     
 
Predicted Mean of Height when Weight = 250 
Original Value 83.42581 | 90% 81.98016 84.81046 
Bootstrap Mean 83.41983 | 95% 81.65707 85.16362 
Bias (BM - OV) -0.0060 | 99% 81.02856 85.72516 
Bias Corrected Value 83.43179     
Standard Error 0.8579     
───────────────────────────────────────────────────────────────────────── 
Number of Bootstrap Samples = 1000, Sampling Method = Observations, Confidence Interval Method = Reflection, 
User-Entered Random Seed = 3118927. 
 
Notes: 
The main purpose of this report is to present the bootstrap confidence intervals of various parameters. All gross outliers should 
have been removed. The sample size should be at least 50 and the sample should be "representative" of the population from 
which it was drawn. 
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Bootstrap Histograms of Predicted Y Means at Specific X Values 
───────────────────────────────────────────────────────────────────────── 

     
 
(3 more histograms are shown) 
 

This report provides bootstrap estimates of the predicted Y means at each user-entered X value. Details of 
the bootstrap method were presented earlier in this chapter. 

Predicted Values and Prediction Intervals of Y Individuals at Specific X 
Values 

 
Predicted Values and Prediction Intervals for Y Individuals at Specific X Values 
───────────────────────────────────────────────────────────────────────── 
   95% Prediction Interval 
 Predicted Standard Limits for Y|X 
Weight Height Error of ──────────────── 
(X) (Yhat|X) Yhat Lower Upper 
────────────────────────────────────────────────────────────────────────────── 

90 52.51884 1.4852 49.39851 55.63917 
100 54.45052 1.4684 51.36558 57.53547 
150 64.10896 1.4404 61.08281 67.13509 
200 73.76738 1.5074 70.60055 76.93422 
250 83.42581 1.6578 79.94288 86.90874 
───────────────────────────────────────────────────────────────────────── 
The prediction interval estimates the predicted value of Y for a single individual with the stated value of X. The interval is only 
accurate if all of the linear regression assumptions are valid. 
 

The predicted values and prediction intervals of the response of Y given X are provided here. The values of X 
used here are specified in the Predict Y at these X Values option on the Reports tab. 

It is important to note that violations of any regression assumptions will invalidate this interval estimate. 

X 

This is the value of X at which the prediction is made. 
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Predicted Y (Yhat|X) 

The predicted value of Y for the value of X indicated. 

Standard Error of Yhat 

This is the estimated standard deviation of the predicted value.  

95% Prediction Limits of Y|X (Lower and Upper) 

These are the lower and upper limits of a 95% prediction interval estimate of an individual Y at this value of 
X. Note that you set the prediction interval alpha on the Reports tab of the procedure input window. 

Bootstrap Confidence Intervals and Histograms for Predicted Y Individuals 
at Specific X Values 

 
Bootstrap Confidence Intervals for Predicted Y Individuals at Specific X Values 
───────────────────────────────────────────────────────────────────────── 
 Estimation Results  Bootstrap Confidence Interval Limits 
───────────────────────  ────────────────────────────── 
Parameter Estimate | Confidence Level Lower Upper 
─────────────────────────────────────────────────────────────────────────────────────────────────────── 

 
Predicted Height when Weight = 90 
Original Value 52.51884 | 90% 49.89190 55.64400 
Bootstrap Mean 52.49085 | 95% 49.58742 56.09112 
Bias (BM - OV) -0.0280 | 99% 47.99874 57.09388 
Bias Corrected Value 52.54683     
Standard Error 1.7275     
 
Predicted Height when Weight = 100 
Original Value 54.45052 | 90% 51.79865 57.36475 
Bootstrap Mean 54.41591 | 95% 51.48851 57.84039 
Bias (BM - OV) -0.0346 | 99% 50.33467 59.90700 
Bias Corrected Value 54.48514     
Standard Error 1.7085     
 
Predicted Height when Weight = 150 
Original Value 64.10896 | 90% 61.36381 67.21675 
Bootstrap Mean 64.12646 | 95% 61.10781 67.58835 
Bias (BM - OV) 0.0175 | 99% 59.74065 68.87939 
Bias Corrected Value 64.09145     
Standard Error 1.7576     
 
Predicted Height when Weight = 200 
Original Value 73.76738 | 90% 70.94756 76.70295 
Bootstrap Mean 73.76675 | 95% 70.53024 77.44383 
Bias (BM - OV) -0.0006 | 99% 69.79328 78.23773 
Bias Corrected Value 73.76801     
Standard Error 1.7475     
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Predicted Height when Weight = 250 
Original Value 83.42581 | 90% 80.68179 86.51836 
Bootstrap Mean 83.40162 | 95% 80.23896 87.15035 
Bias (BM - OV) -0.0242 | 99% 79.26602 87.89960 
Bias Corrected Value 83.45     
Standard Error 1.7781     
───────────────────────────────────────────────────────────────────────── 
Number of Bootstrap Samples = 1000, Sampling Method = Observations, Confidence Interval Method = Reflection, 
User-Entered Random Seed = 3118927. 
 
Notes: 
The main purpose of this report is to present the bootstrap confidence intervals of various parameters. All gross outliers should 
have been removed. The sample size should be at least 50 and the sample should be "representative" of the population from 
which it was drawn. 
 
 
Bootstrap Histograms of Predicted Y Individuals at Specific X Values 
───────────────────────────────────────────────────────────────────────── 

     
 
(3 more histograms are shown) 
 

This report provides bootstrap estimates of the predicted Y individual values at each user-entered X value. 
Details of the bootstrap method were presented earlier in this chapter. 
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Residual Plots 
The residuals can be graphically analyzed in numerous ways. For certain, the regression analyst should 
examine all of the basic residual graphs:  the histogram, the density trace, the normal probability plot, the 
serial correlation plots (for time series data), the scatter plot of the residuals versus the sequence of the 
observations (for time series data), and the scatter plot of the residuals versus the independent variable. 

For the scatter plots of residuals versus either the predicted values of Y or the independent variables, 
Hoaglin (1983) explains that there are several patterns to look for. You should note that these patterns are 
very difficult, if not impossible, to recognize for small data sets. 

Point Cloud 

A point cloud, basically in the shape of a rectangle or a horizontal band, would indicate no relationship 
between the residuals and the variable plotted against them. This is the preferred condition. 

Wedge 

An increasing or decreasing wedge would be evidence that there is increasing or decreasing (nonconstant) 
variation. A transformation of Y may correct the problem or weighted least squares may be needed. 

Bowtie 

This is similar to the wedge above in that the residual plot shows a decreasing wedge in one direction while 
simultaneously having an increasing wedge in the other direction. A transformation of Y may correct the 
problem or weighted least squares may be needed. 

Sloping Band 

This kind of residual plot suggests adding a linear version of the independent variable to the model. 

Curved Band 

This kind of residual plot may be indicative of a nonlinear relationship between Y and the independent 
variable that was not accounted for. The solution might be to use a transformation on Y to create a linear 
relationship with X. Another possibility might be to add quadratic or cubic terms of a particular independent 
variable. 

Curved Band with Increasing or Decreasing Variability 

This residual plot is really a combination of the wedge and the curved band. It too must be avoided. 
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Residual Distribution Plots 
 
Histogram 
───────────────────────────────────────────────────────────────────────── 

     
 

The purpose of the histogram of the residuals is to evaluate whether they are normally distributed. Unless 
you have a large sample size, it is best not to rely on the histogram for visually evaluating normality of the 
residuals. The better choice would be the normal probability plot. 

 
Normal Probability Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

If the residuals are normally distributed, the data points of the normal probability plot will fall along a 
straight line. Major deviations from this ideal picture reflect departures from normality. Stragglers at either 
end of the normal probability plot indicate outliers. Curvature at both ends of the plot indicates long or 
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short distributional tails. Convex, or concave, curvature indicates a lack of symmetry. Gaps, plateaus, or 
segmentation indicate clustering and may require a closer examination of the data or model. Of course, use 
of this graphic tool with very small sample sizes is unwise.  

If the residuals are not normally distributed, the t-tests on regression coefficients, the F-tests, and the 
interval estimates are not valid. This is a critical assumption to check. 

Residuals Plots 
 
Residuals vs X Plots 
───────────────────────────────────────────────────────────────────────── 

     
 

This plot is useful for showing nonlinear patterns and outliers. The preferred pattern is a rectangular shape 
or point cloud. Any other nonrandom pattern may require a redefining of the regression model. 
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|Residuals| vs X Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

This plot is useful for showing nonconstant variance in the residuals. The preferred pattern is a rectangular 
shape or point cloud. The most common type of nonconstant variance occurs when the variance is 
proportion to X. This is shown by a funnel shape. Remedies for nonconstant variances were discussed 
earlier. 

 
RStudent vs X Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

This is a scatter plot of the RStudent residuals versus the independent variable. The preferred pattern is a 
rectangular shape or point cloud. This plot is helpful in identifying any outliers. 
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Sequence Plot: Residuals vs Row Number 
───────────────────────────────────────────────────────────────────────── 

 
 

Sequence plots may be useful in finding variables that are not accounted for by the regression equation. 
They are especially useful if the data were taken over time. 

 
Serial Correlation Plot: Residuals vs Lagged Residuals 
───────────────────────────────────────────────────────────────────────── 

 
 

This is a scatter plot of the ith residual versus the ith-1 residual. It is only useful for time series data where the 
order of the rows on the database is important. 

The purpose of this plot is to check for first-order autocorrelation. You would like to see a random pattern, 
i.e., a rectangular or uniform distribution of the points. A strong positive or negative trend indicates a need 
to redefine the model with some type of autocorrelation component.  
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Positive autocorrelation or serial correlation means that the residual in time period t tends to have the same 
sign as the residual in time period (t - 1). On the other hand, a strong negative autocorrelation means that 
the residual in time period t tends to have the opposite sign as the residual in time period (t - 1).  

Be sure to check the Durbin-Watson statistic. 

Predicted Y Values and Residuals 
 
Predicted Y Values and Residuals 
───────────────────────────────────────────────────────────────────────── 
   Predicted  
 Weight Height Height  
Row (X) (Y) (Yhat|X) Residual 
──────────────────────────────────────────────────────────────────── 

1 159 64 65.84747 -1.8475 
2 155 63 65.07480 -2.0748 
3 157 67 65.46114 1.5389 
4 125 60 59.27974 0.7203 
5 103 52 55.03003 -3.0300 
6 122 58 58.70023 -0.7002 
7 101 56 54.64369 1.3563 
8 82 52 50.97349 1.0265 
9 228 79 79.17610 -0.1761 
10 199 76 73.57421 2.4258 
11 195 73 72.80154 0.1985 
12 110 56 56.38221 -0.3822 
13 191 71 72.02886 -1.0289 
14 151 65 64.30212 0.6979 
15 119 59 58.12073 0.8793 
16 119 59 58.12073 0.8793 
17 112 58 56.76855 1.2315 
18 87 51 51.93933 -0.9393 
19 190 71 71.83569 -0.8357 
20 87 52 51.93933 0.0607 
21 100  54.45052  
22 150  64.10896  
23 200  73.76738  
24  50   
25  60   
26  70   
───────────────────────────────────────────────────────────────────────── 
This report provides a data list that may be used to verify whether the correct variables were selected. 
 

This report lists the values of X, Y, the predicted values of Y, and the residuals. 
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Predicted Values and Confidence Intervals for Y Means 
 
Predicted Values and Confidence Intervals for Y Means 
───────────────────────────────────────────────────────────────────────── 
     95% Confidence Interval 
   Predicted Standard Limits for Y Mean|X 
 Weight Height Height Error of ───────────────── 
Row (X) (Y) (Yhat|X) Yhat Mean Lower Upper 
────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 159 64 65.84747 0.3457 65.12122 66.57372 
2 155 63 65.07480 0.3343 64.37253 65.77706 
3 157 67 65.46114 0.3397 64.74746 66.17480 
4 125 60 59.27974 0.3323 58.58169 59.97779 
5 103 52 55.03003 0.4162 54.15566 55.90440 
6 122 58 58.70023 0.3403 57.98536 59.41511 
7 101 56 54.64369 0.4261 53.74841 55.53898 
8 82 52 50.97349 0.5325 49.85482 52.09216 
9 228 79 79.17610 0.7309 77.64045 80.71175 
10 199 76 73.57421 0.5434 72.43261 74.71581 
. . . . . . . 
. . . . . . . 
. . . . . . . 
───────────────────────────────────────────────────────────────────────── 
The confidence interval estimates the mean of the Y values in a large sample of individuals with the stated value of X. The 
interval is only accurate if all of the linear regression assumptions are valid. 
 

The predicted values and confidence intervals of the mean response of Y given X are given for each 
observation.  

X 

This is the value of X at which the prediction is made. 

Y 

This is the actual value of Y. 

Predicted Y (Yhat|X) 

The predicted value of Y for the value of X indicated. 

Standard Error of Yhat Mean 

This is the estimated standard deviation of the predicted mean value.  

95% Confidence Interval Limits for Y Mean|X (Lower and Upper) 

These are the lower and upper limits of a 95% confidence interval estimate of the mean of Y at this value of 
X. Note that you set the confidence interval alpha on the Reports tab of the procedure input window. 
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Predicted Values and Prediction Intervals for Y Individuals 
 
Predicted Values and Prediction Intervals for Y Individuals 
───────────────────────────────────────────────────────────────────────── 
     95% Prediction Interval 
   Predicted Standard Limits for Y|X 
 Weight Height Height Error of ──────────────── 
Row (X) (Y) (Yhat|X) Yhat Lower Upper 
────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 159 64 65.84747 1.4456 62.81044 68.88450 
2 155 63 65.07480 1.4429 62.04341 68.10618 
3 157 67 65.46114 1.4441 62.42709 68.49518 
4 125 60 59.27974 1.4424 56.24933 62.31015 
5 103 52 55.03003 1.4640 51.95422 58.10584 
6 122 58 58.70023 1.4443 55.66590 61.73456 
7 101 56 54.64369 1.4669 51.56187 57.72552 
8 82 52 50.97349 1.5012 47.81952 54.12746 
9 228 79 79.17610 1.5825 75.85130 82.50091 
10 199 76 73.57421 1.5051 70.41203 76.73639 
. . . . . . . 
. . . . . . . 
. . . . . . . 
───────────────────────────────────────────────────────────────────────── 
The prediction interval estimates the predicted value of Y for a single individual with the stated value of X. The interval is only 
accurate if all of the linear regression assumptions are valid. 
 

The predicted values and prediction intervals of individual Y response values given X are given for each 
observation. 

X 

This is the value of X at which the prediction is made. 

Y 

This is the actual value of Y. 

Predicted Y (Yhat|X) 

The predicted value of Y for the value of X indicated. 

Standard Error of Yhat 

This is the estimated standard deviation of the predicted value suitable for creating a prediction limit for an 
individual.  

95% Prediction Interval Limits for Y|X (Lower and Upper) 

These are the lower and upper limits of a 95% prediction interval estimate of an individual Y at this value of 
X. Note that you set the prediction interval alpha on the Reports tab of the procedure input window. 
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Working-Hotelling Simultaneous Confidence Bands 
 
Working-Hotelling Simultaneous Confidence Bands 
───────────────────────────────────────────────────────────────────────── 
     95% Simultaneous Confidence 
   Predicted Standard Band Limits for Y Mean|X 
 Weight Height Height Error of ───────────────────── 
Row (X) (Y) (Yhat|X) Yhat Mean Lower Upper 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 159 64 65.84747 0.3457 64.80357 66.89137 
2 155 63 65.07480 0.3343 64.06537 66.08422 
3 157 67 65.46114 0.3397 64.43532 66.48695 
4 125 60 59.27974 0.3323 58.27638 60.28310 
5 103 52 55.03003 0.4162 53.77323 56.28683 
6 122 58 58.70023 0.3403 57.67268 59.72778 
7 101 56 54.64369 0.4261 53.35683 55.93056 
8 82 52 50.97349 0.5325 49.36554 52.58144 
9 228 79 79.17610 0.7309 76.96878 81.38342 
10 199 76 73.57421 0.5434 71.93330 75.21513 
. . . . . . . 
. . . . . . . 
. . . . . . . 
───────────────────────────────────────────────────────────────────────── 
This is a confidence band for the regression line for all possible values of X from -infinity to + infinity. The confidence coefficient is 
the proportion of times that this procedure yields a band that includes the true regression line when a large number of samples 
are taken using the same X values as in this sample. 
 

The predicted values and confidence band of the mean response function are given for each observation. 
Note that this is a confidence band for all possible values of X along the real number line. The confidence 
coefficient is the proportion of time that this procedure yields a band that includes the true regression line 
when a large number of samples are taken using the X values as in this sample. 

X 

This is the value of X at which the prediction is made. 

Y 

This is the actual value of Y. 

Predicted Y (Yhat|X) 

The predicted value of Y for the value of X indicated. 

Standard Error of Yhat Mean 

This is the estimated standard deviation of the predicted mean value.  

95% Simultaneous Confidence Band Limits for Y Mean|X (Lower and Upper) 

This is the lower and upper limits of the 95% simultaneous confidence band for the value of Y at this X. Note 
that you set the confidence band alpha on the Reports tab of the procedure input window. 
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Residuals 
 
Residuals 
───────────────────────────────────────────────────────────────────────── 
   Predicted   Percent 
 Weight Height Height  Standardized Absolute 
Row (X) (Y) (Yhat|X) Residual Residual Error 
────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 159 64 65.84747 -1.8475 -1.3580 2.8867 
2 155 63 65.07480 -2.0748 -1.5220 3.2933 
3 157 67 65.46114 1.5389 1.1299 2.2968 
4 125 60 59.27974 0.7203 0.5282 1.2004 
5 103 52 55.03003 -3.0300 -2.2604 5.8270 
6 122 58 58.70023 -0.7002 -0.5142 1.2073 
7 101 56 54.64369 1.3563 1.0142 2.4220 
8 82 52 50.97349 1.0265 0.7904 1.9741 
9 228 79 79.17610 -0.1761 -0.1470 0.2229 
10 199 76 73.57421 2.4258 1.8744 3.1918 
. . . . . . . 
. . . . . . . 
. . . . . . . 
───────────────────────────────────────────────────────────────────────── 
The residual is the difference between the actual and the predicted Y values. The formula is Residual = Y - Yhat. The Percent 
Absolute Error is the 100 |Residual| / Y. 
 

This is a report showing the value of the residual at each observation. 

X 

This is the value of X at which the prediction is made. 

Y 

This is the actual value of Y. 

Predicted Y (Yhat|X) 

The predicted value of Y for the value of X indicated. 

Residual 

This is the difference between the actual and predicted values of Y.  

Standardized Residual 

The variance of the observed residuals is not constant. This makes comparisons among the residuals 
difficult. One solution is to standardize the residuals by dividing by their standard deviations. This gives a set 
of residuals with constant variance. 

The formula for this residual is 

𝑟𝑟𝑗𝑗 =
𝑒𝑒𝑗𝑗

𝑠𝑠�1 − ℎ𝑗𝑗𝑗𝑗
 

Percent Absolute Error 

The percent is the absolute value of the Residual divided by the Actual value. Scrutinize observations with the 
large percent errors. 
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Residual Diagnostics 
 
Residual Diagnostics 
───────────────────────────────────────────────────────────────────────── 
 Weight   Hat   
Row (X) Residual RStudent Diagonal Cook's D MSEi 
───────────────────────────────────────────────────────────────────────────────────────────────────── 

1 159 -1.8475 -1.3931 0.0607 0.0595 1.8723 
2 155 -2.0748 -1.5845 0.0567 0.0696 1.8176 
3 157 1.5389 1.1392 0.0586 0.0397 1.9381 
4 125 0.7203 0.5173 0.0560 0.0083 2.0537 
5 103 -3.0300 * -2.5957 0.0879 0.2462 1.4939 
6 122 -0.7002 -0.5034 0.0588 0.0083 2.0554 
7 101 1.3563 1.0150 0.0922 0.0522 1.9669 
8 82 1.0265 0.7818 0.1439 0.0525 2.0137 
9 228 -0.1761 * -0.1429 0.2712 0.0040 2.0836 
10 199 2.4258 * 2.0305 0.1499 0.3097 1.6789 
. . . . . . . 
. . . . . . . 
. . . . . . . 
───────────────────────────────────────────────────────────────────────── 
Outliers are rows that are separated from the rest of the data. Influential rows are those whose omission results in a relatively 
large change in the results. This report lets you see both.  
 
An outlier may be defined as a row in which |RStudent| > 2. A moderately influential row is one with a CooksD > 0.5. A heavily 
influential row is one with a CooksD > 1. 
 
MSEi is the value of the Mean Square Error (the average of the sum of squared residuals) calculated with each row omitted. 
 

This is a report gives residual diagnostics for each observation. These were discussed earlier in the technical 
of this chapter and we refer you to that section for the technical details. 

X 

This is the value of X at which the prediction is made. 

Residual 

This is the difference between the actual and predicted values of Y.  

RStudent 

Sometimes called the externally studentized residual, RStudent is a standardized residual that has the 
impact of a single observation removed from the mean square error. If the regression assumption of 
normality is valid, a single value of the RStudent has a t distribution with N - 2 degrees of freedom. 

An observation is starred as an outlier if the absolute value of RStudent is greater than 2. 

Hat Diagonal 

The hat diagonal captures an observation’s remoteness in the X-space. Some authors refer to the hat 
diagonal as a measure of leverage in the X-space.  

Hat diagonals greater than 4 / N are considered influential. However, an influential observation is not a bad 
observation. An influential observation should be checked to determine if it is also an outlier. 
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Cook’s D 

Cook’s D attempts to measure the influence the observation on all N fitted values. The formula for Cook’s D 
is 

𝐷𝐷𝑗𝑗 =
∑ 𝑤𝑤𝑗𝑗�𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑖𝑖)�2𝑁𝑁
𝑖𝑖=1

𝑝𝑝𝑠𝑠2
 

The 𝑦𝑦�𝑗𝑗(𝑖𝑖) are found by removing observation i before the calculations. A Cook’s D value greater than one 
indicates an observation that has large influence. Some statisticians have suggested that a better cutoff 
value is 4 / (N - 2). 

MSEi 

This is the value of the mean squared error calculated without observation j.  

Leave One Row Out 
 
Leave One Row Out 
───────────────────────────────────────────────────────────────────────── 
Row RStudent DFFITS Cook's D CovRatio DFBETAS(0) DFBETAS(1) 
────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 -1.3931 -0.3540 0.0595 0.9615 0.0494 -0.1483 
2 -1.5845 -0.3885 0.0696 0.9023 0.0228 -0.1337 
3 1.1392 0.2842 0.0397 1.0279 -0.0284 0.1087 
4 0.5173 0.1260 0.0083 1.1511 0.0739 -0.0414 
5 * -2.5957 -0.8059 0.2462 0.6304 -0.6820 0.5292 
6 -0.5034 -0.1258 0.0083 1.1564 -0.0800 0.0486 
7 1.0150 0.3234 0.0522 1.0978 0.2781 -0.2188 
8 0.7818 0.3205 0.0525 1.2202 0.3024 -0.2589 
9 -0.1429 -0.0872 0.0040 * 1.5346 0.0646 -0.0787 
10 * 2.0305 0.8525 0.3097 0.8542 -0.5244 0.6959 
. . . . . . . 
. . . . . . . 
. . . . . . . 
───────────────────────────────────────────────────────────────────────── 
Each column gives the impact on some aspect of the linear regression of omitting that row. 
 
RStudent represents the size of the residual. DFFITS represents the change in the fitted value of a row. Cook's D summarizes the 
change in the fitted values of all rows. CovRatio represents the amount of change in the determinant of the covariance matrix. 
DFBETAS(0) and DFBETAS(1) give the amount of change in the intercept and slope. 
 

Each column gives the impact on some aspect of the linear regression of omitting that row. 

RStudent 

Sometimes called the externally studentized residual, RStudent is a standardized residual that has the 
impact of a single observation removed from the mean square error. If the regression assumption of 
normality is valid, a single value of the RStudent has a t distribution with N - 2 degrees of freedom. 

An observation is starred as an outlier if the absolute value of RStudent is greater than 2. 

Dffits 

Dffits is the standardized difference between the predicted value of Y with and without observation j. It 
represents the number of estimated standard errors that the predicted value changes if that observation is 
omitted. Dffits > 1 would flag observations as being influential in prediction. 
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Cook’s D 

Cook’s D attempts to measure the influence of the observation on all N fitted values. The formula for Cook’s 
D is 

𝐷𝐷𝑗𝑗 =
∑ 𝑤𝑤𝑗𝑗�𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑖𝑖)�2𝑁𝑁
𝑖𝑖=1

𝑝𝑝𝑠𝑠2
 

The 𝑦𝑦�𝑗𝑗(𝑖𝑖) are found by removing observation i before the calculations. A Cook’s D value greater than one 
indicates an observation that has large influence. Some statisticians have suggested that a better cutoff 
value is 4 / (N - 2). 

CovRatio 

This diagnostic flags observations that have a major impact on the generalized variance of the regression 
coefficients. A value exceeding 1.0 implies that the observation provides an improvement, i.e., a reduction in 
the generalized variance of the coefficients. A value of CovRatio less than 1.0 flags an observation that 
increases the estimated generalized variance. This is not a favorable condition. 

DFBETAS(0) and DFBETAS(1) 

DFBETAS(0) and DFBETAS(1) are the standardized change in the intercept and slope when an observation is 
omitted from the analysis. Belsley, Kuh, and Welsch (1980) recommend using a cutoff of 2/√𝑁𝑁 when N is 
greater than 100. When N is less than 100, others have suggested using a cutoff of 1.0 or 2.0 for the 
absolute value of DFBETAS. 

Outlier Detection Chart 
 
Outlier Detection Chart 
───────────────────────────────────────────────────────────────────────── 
 Weight   Standardized    
Row (X) Residual  Residual  RStudent  
───────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 159 -1.8475 |||||||||...... -1.3580 ||||||||....... -1.3931 |||||||........ 
2 155 -2.0748 ||||||||||..... -1.5220 |||||||||...... -1.5845 |||||||||...... 
3 157 1.5389 |||||||........ 1.1299 |||||||........ 1.1392 ||||||......... 
4 125 0.7203 |||............ 0.5282 |||............ 0.5173 ||............. 
5 103 -3.0300 ||||||||||||||| -2.2604 ||||||||||||||| * -2.5957 ||||||||||||||| 
6 122 -0.7002 |||............ -0.5142 |||............ -0.5034 ||............. 
7 101 1.3563 ||||||......... 1.0142 ||||||......... 1.0150 |||||.......... 
8 82 1.0265 ||||........... 0.7904 |||||.......... 0.7818 ||||........... 
9 228 -0.1761 |.............. -0.1470 |.............. -0.1429 |.............. 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 
───────────────────────────────────────────────────────────────────────── 
Outliers are rows that are separated from the rest of the data. Since outliers can have dramatic effects on the results, corrective 
action, such as elimination, must be carefully considered. Outlying rows should not automatically be removed unless a good 
reason for their removal can be given. 
 
An outlier may be defined as a row in which |RStudent| > 2. Rows with this characteristic have been starred. 
 

Outliers are rows that are far removed from the rest of the data. Since outliers can have dramatic effects on 
the results, corrective action, such as elimination, must be carefully considered. Outlying rows should not be 
removed unless a good reason for their removal can be given. 
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An outlier may be defined as a row in which |RStudent| > 2. Rows with this characteristic have been starred. 

X 

This is the value of X. 

Residual 

This is the difference between the actual and predicted values of Y.  

Standardized Residual 

The variance of the observed residuals is not constant. This makes comparisons among the residuals 
difficult. One solution is to standardize the residuals by dividing by their standard deviations. This gives a set 
of residuals with constant variance. 

RStudent 

Sometimes called the externally studentized residual, RStudent is a standardized residual that has the 
impact of a single observation removed from the mean square error. If the regression assumption of 
normality is valid, a single value of the RStudent has a t distribution with N - 2 degrees of freedom. 

An observation is starred as an outlier if the absolute value of RStudent is greater than 2. 

Influence Detection Chart 
 
Influence Detection Chart 
───────────────────────────────────────────────────────────────────────── 
 Weight       
Row (X) DFFITS  Cook's D  DFBETAS(1)  
────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 159 -0.3540 ||||||......... 0.0595 ||............. -0.1483 ||............. 
2 155 -0.3885 ||||||......... 0.0696 |||............ -0.1337 ||............. 
3 157 0.2842 ||||........... 0.0397 |.............. 0.1087 ||............. 
4 125 0.1260 |.............. 0.0083 |.............. -0.0414 |.............. 
5 103 -0.8059 ||||||||||||||. 0.2462 |||||||||||.... 0.5292 |||||||||||.... 
6 122 -0.1258 |.............. 0.0083 |.............. 0.0486 |.............. 
7 101 0.3234 |||||.......... 0.0522 ||............. -0.2188 ||||........... 
8 82 0.3205 |||||.......... 0.0525 ||............. -0.2589 |||||.......... 
9 228 -0.0872 |.............. 0.0040 |.............. -0.0787 |.............. 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 
───────────────────────────────────────────────────────────────────────── 
Influential rows are those whose omission results in a relatively large change in the results. They are not necessarily harmful. 
However, they will distort the results if they are also outliers. The impact of influential rows should be studied very carefully. Their 
accuracy should be double-checked. 
DFFITS is the standardized change in Yhat when the row is omitted. A row is influential when DFFITS > 1 for small datasets (N < 
30) or when DFFITS > 2*SQR(1/N) for medium to large datasets. 
 
Cook's D gives the influence of each row on the Yhats of all the rows. Cook suggests investigating all rows having a Cook's D > 
0.5. Rows in which Cook's D > 1.0 are very influential. 
 
DFBETAS(1) is the standardized change in the slope when this row is omitted. DFBETAS(1) > 1 for small datasets (N < 30) and 
DFBETAS(1) > 2/SQR(N) for medium and large datasets are indicative of influential rows. 
 

Influential rows are those whose omission results in a relatively large change in the results. They are not 
necessarily harmful. However, they will distort the results if they are also outliers. The impact of influential 
rows should be studied very carefully. The accuracy of the data values should be double-checked. 
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X 

This is the value of X. 

Dffits 

Dffits is the standardized difference between the predicted value of Y with and without observation j. It 
represents the number of estimated standard errors that the predicted value changes if that observation is 
omitted. Dffits > 1 would flag observations as being influential in prediction. 

Cook’s D 

Cook’s D attempts to measure the influence of the observation on all N fitted values. The formula for Cook’s 
D is 

𝐷𝐷𝑗𝑗 =
∑ 𝑤𝑤𝑗𝑗�𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑖𝑖)�2𝑁𝑁
𝑖𝑖=1

𝑝𝑝𝑠𝑠2
 

The 𝑦𝑦�𝑗𝑗(𝑖𝑖) are found by removing observation i before the calculations. A Cook’s D value greater than one 
indicates an observation that has large influence. Some statisticians have suggested that a better cutoff 
value is 4 / (N - 2). 

DFBETAS(1) 

DFBETAS(1) is the standardized change in the slope when an observation is omitted from the analysis. 
Belsley, Kuh, and Welsch (1980) recommend using a cutoff of 2/√𝑁𝑁 when N is greater than 100. When N is 
less than 100, others have suggested using a cutoff of 1.0 or 2.0 for the absolute value of DFBETAS. 

Outlier and Influence Chart 
 
Outlier and Influence Chart 
───────────────────────────────────────────────────────────────────────── 
      Hat  
 Weight RStudent  Cooks D  Diagonal  
Row (X) (Outlier)  (Influence)  (Leverage)  
──────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 159 -1.3931 |||||||........ 0.0595 ||............. 0.0607 |.............. 
2 155 -1.5845 |||||||||...... 0.0696 |||............ 0.0567 |.............. 
3 157 1.1392 ||||||......... 0.0397 |.............. 0.0586 |.............. 
4 125 0.5173 ||............. 0.0083 |.............. 0.0560 |.............. 
5 103 * -2.5957 ||||||||||||||| 0.2462 |||||||||||.... 0.0879 |.............. 
6 122 -0.5034 ||............. 0.0083 |.............. 0.0588 |.............. 
7 101 1.0150 |||||.......... 0.0522 ||............. 0.0922 |.............. 
8 82 0.7818 ||||........... 0.0525 ||............. 0.1439 |||............ 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 
───────────────────────────────────────────────────────────────────────── 
Outliers are rows that are separated from the rest of the data. Influential rows are those whose omission results in a relatively 
large change in the results. This report lets you see both.  
 
An outlier may be defined as a row in which |RStudent| > 2. A moderately influential row is one with a CooksD > 0.5. A heavily 
influential row is one with a CooksD > 1. 
 

This report provides diagnostics about whether a row is an outlier, influential, and has high leverage. 
Outliers are rows that are removed from the rest of the data. Influential rows are those whose omission 
results in a relatively large change in the results. This report lets you see both. 
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X 

This is the value of X. 

RStudent (Outlier) 

RStudent is a standardized residual that has the impact of a single observation removed from the mean 
square error. If the regression assumption of normality is valid, a single value of the RStudent has a t 
distribution with N - 2 degrees of freedom. 

An observation is starred as an outlier if the absolute value of RStudent is greater than 2. 

Cook’s D (Influence) 

Cook’s D attempts to measure the influence the observation on all N fitted values. The formula for Cook’s D 
is 

𝐷𝐷𝑗𝑗 =
∑ 𝑤𝑤𝑗𝑗�𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑖𝑖)�2𝑁𝑁
𝑖𝑖=1

𝑝𝑝𝑠𝑠2
 

The 𝑦𝑦�𝑗𝑗(𝑖𝑖) are found by removing observation i before the calculations. A Cook’s D value greater than one 
indicates an observation that has large influence. Some statisticians have suggested that a better cutoff 
value is 4 / (N - 2). 

Hat Diagonal (Leverage) 

The hat diagonal captures an observation’s remoteness in the X-space. Some authors refer to the hat 
diagonal as a measure of leverage in the X-space.  

Hat diagonals greater than 4 / N are considered influential. However, an influential observation is not a bad 
observation. An influential observation should be checked to determine if it is also an outlier. 

Inverse Predicted Values and Confidence Intervals for X Means 
 
Inverse Predicted Values and Confidence Intervals for X Means 
───────────────────────────────────────────────────────────────────────── 
     95% Confidence Interval 
   Predicted  Limits for X Mean|Y 
 Height Weight Weight  ───────────────── 
Row (Y) (X) (Xhat|Y) X-Xhat|Y Lower Upper 
──────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 64 159 149.43600 9.5640320 145.98320 153.01930 
2 63 155 144.25910 10.7408600 140.84410 147.73610 
3 67 157 164.96640 -7.9664460 161.13100 169.13870 
4 60 125 128.72870 -3.7286660 125.11810 132.19480 
5 52 103 87.31406 15.6859400 81.48936 92.44440 
6 58 122 118.37500 3.6249850 114.39470 122.07350 
7 56 101 108.02140 -7.0213630 103.52270 112.10070 
8 52 82 87.31406 -5.3140610 81.48936 92.44440 
9 79 228 227.08830 0.9116458 219.73880 235.59970 
10 76 199 211.55790 -12.5578800 205.22830 218.84300 
. . . . . . . 
. . . . . . . 
. . . . . . . 
───────────────────────────────────────────────────────────────────────── 
This confidence interval estimates the mean of X in a large sample of individuals with the stated value of Y. This method of 
inverse prediction is also called "calibration." 
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This report provides inverse prediction or calibration results. Although a regression of Y on X has been fit, 
our interest here is predicting the value of X from the value of Y. This report provides both a point estimate 
and an interval estimate of the predicted mean of X given Y. 

Y 

This is the actual value of Y. 

X 

This is the value of X at which the prediction is made. 

Predicted X (Xhat|Y) 

The predicted value of X for the value of Y indicated. 

X-Xhat|Y 

This is the difference between the actual value of X and the predicted value of X at this value of Y. 

95% Confidence Interval Limits for X Mean|Y (Lower and Upper) 

These are the lower and upper limits of a 95% confidence interval estimate of the mean of X at this value of 
Y. Note that you set the confidence interval alpha on the Reports tab of the procedure input window. 

Inverse Predicted Values and Prediction Intervals of X Individuals 
 
Inverse Predicted Values and Prediction Intervals for X Individuals 
───────────────────────────────────────────────────────────────────────── 
     95% Prediction Interval 
   Predicted  Limits for X|Y 
 Height Weight Weight  ───────────────── 
Row (Y) (X) (Xhat|Y) X-Xhat|Y Lower Upper 
──────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 64 159 149.43600 9.5640320 133.78580 165.21670 
2 63 155 144.25910 10.7408600 128.59060 159.98960 
3 67 157 164.96640 -7.9664460 149.30360 180.96620 
4 60 125 128.72870 -3.7286660 112.93650 144.37650 
5 52 103 87.31406 15.6859400 70.70028 103.23350 
6 58 122 118.37500 3.6249850 102.44360 134.02460 
7 56 101 108.02140 -7.0213630 91.90588 123.71750 
8 52 82 87.31406 -5.3140610 70.70028 103.23350 
9 79 228 227.08830 0.9116458 210.42140 244.91720 
10 76 199 211.55790 -12.5578800 195.27440 228.79690 
. . . . . . . 
. . . . . . . 
. . . . . . . 
───────────────────────────────────────────────────────────────────────── 
This prediction interval estimates the predicted value of X for a single individual with the stated value of Y. This method of inverse 
prediction is also called "calibration." 
 

This report provides inverse prediction or calibration results. Although a regression of Y on X has been fit, 
our interest here is predicting the value of X from the value of Y. This report provides both a point estimate 
and an interval estimate of the predicted value of X given Y. 
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Y 

This is the actual value of Y. 

X 

This is the value of X at which the prediction is made. 

Predicted X (Xhat|Y) 

The predicted value of X for the value of Y indicated. 

X-Xhat|Y 

This is the difference between the actual value of X and the predicted value of X at this value of Y. 

95% Prediction Interval Limits for X|Y (Lower and Upper) 

These are the lower and upper limits of a 95% prediction interval estimate of X at this value of Y. Note that 
you set the prediction interval alpha on the Reports tab of the procedure input window. 
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